Advertisement

Greenhouse gas mitigation potential of balanced fertilization cropland under double-cropping systems: a case study in Shaanxi province, China

  • Changjiang Li
  • Changzhen Li
  • Juan Han
  • Junli Zhang
  • Yangfeng Wang
  • Fei Yang
  • Xiaoxia WenEmail author
  • Yuncheng LiaoEmail author
Article

Abstract

Reducing agricultural greenhouse gas (GHG) emissions is attracting increasing attention. Balanced fertilization (BF) of cropland has been widely promoted and applied and has great potential to reduce GHG emissions. This study assesses GHG mitigation of BF cropland systems including winter wheat and summer maize double-cropping system (wheat-maize) and winter oilseed rape (Brassica napus) and rice double-cropping system (rape-rice) in Shaanxi province, China. We determined the boundaries, scenarios, leakage, and sources of GHG mitigation and developed a measurement system for GHG mitigation under these cropping systems for BF farmland. In the measurement system, except for the changes in nitrogen fertilizer rates, soil carbon storage, mechanical fuel consumption, and fertilizer management mode (paddy), change in crop yield was recommended as a primary source of GHG mitigation. The BF cropland areas of wheat-maize and rape-rice were 2818.89 ha and 1671.73 ha, respectively. The use of BF reduced the GHG emissions of wheat-maize by 1.15 tCO2 equivalent (CO2e) ha−1 per year and the emissions of rape-rice by 1.05 tCO2e ha−1 per year. The BF cropland produced 5007.6 tCO2e per year. Our results do not only provide a reference for the assessment of GHG mitigation on BF cropland under double-cropping systems, but also will be helpful for improving the methodology of GHG mitigation on BF cropland.

Keywords

Greenhouse gas mitigation Farmland The measurement system Fertilizer Double-cropping system 

Notes

Funding information

This study was funded by the Dow Fund, Shaanxi Province’s agricultural greenhouse gas emission reduction projects, and the Planning Project of The Twelfth Five-Year-Plan in National Science and Technology for the Rural Development in China (2015BAD22B03).

References

  1. Aertsens, J., Nocker, L. D., & Gobin, A. (2013). Valuing the carbon sequestration potential for European agriculture. Land Use Policy, 31, 584–594.CrossRefGoogle Scholar
  2. Bao, S. D. (2000). Soil agrochemical analysis. Beijing: China Agriculture Press.Google Scholar
  3. Bouwman, A. F., Boumans, L. J. M., & Batjes, N. H. (2002). Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles, 16, 1058.Google Scholar
  4. Brummell, M. E., Farrell, R. E., & Siciliano, S. D. (2012). Greenhouse gas soil production and surface fluxes at a high arctic polar oasis. Soil Biology and Biochemistry, 52, 1–12.CrossRefGoogle Scholar
  5. Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330, 192–196.CrossRefGoogle Scholar
  6. Chen, Z., Wang, H., Liu, X., Zhao, X., Lu, D., Zhou, J., & Li, C. (2017). Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil and Tillage Research, 165, 121–127.CrossRefGoogle Scholar
  7. Chen, Y., Li, S., Zhang, Y., Li, T., Ge, H., Xia, S., Gu, J., Zhang, H., Lv, B., Wu, X., Wang, Z., Yang, J., & Liu, L. (2019). Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biology and Biochemistry, 129, 191–200.CrossRefGoogle Scholar
  8. Cheng, Y. Q., Yang, L. Z., Cao, Z. H., & Yin, S. X. (2009). Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geroderma, 151, 31–41.CrossRefGoogle Scholar
  9. Cheng, K., Pan, G. X., Smith, P., Luo, T., Li, L. Q., Zheng, J. W., Zhang, X. H., Han, X. J., & Yan, M. (2011a). Carbon footprint of China’s crop production—an estimation using agro-statistics data over 1993-2007. Agriculture, Ecosystems and Environment, 142, 231–237.CrossRefGoogle Scholar
  10. Cheng, K., Pan, G. X., Zhang, B., Luo, T., Li, L. Q., Zheng, J. W., Zhang, X. H., Han, X. J., & Du, Y. L. (2011b). Discussion on the methodology for quantifying carbon sequestration and reduction in greenhouse gas emission under recommended fertilization project. Journal of Agro-Environment Science, 30, 1803–1810.Google Scholar
  11. Dai, W. D. (2006). Brief introduction to clean development mechanism (CDM)—brief theoretic on methodology of clean development mechanism. Biomass Chemical Engineering, 40, 50–52.Google Scholar
  12. Dong, Q., Yang, Y., Yu, K., & Feng, H. (2018). Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agricultural Water Management, 201, 133–143.CrossRefGoogle Scholar
  13. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., & Vörösmarty, C. J. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
  14. Gao, B., Ju, X. T., Zhang, Q., Christie, P., & Zhang, F. S. (2011). New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences Discussions, 8, 3011–3024.CrossRefGoogle Scholar
  15. Geng, J., Sun, Y., Zhang, M., Li, C., Yang, Y., Liu, Z., & Li, S. (2015). Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system. Field Crops Research, 184, 65–73.CrossRefGoogle Scholar
  16. Gregorich, E. G., Liang, B. C., Ellert, B. H., & Drury, C. F. (1996). Fertilization effects on soil organic matter turnover and corn residue C storage. Soil Science Society of America Journal, 60(2), 472–476.CrossRefGoogle Scholar
  17. Hao, H. B., & Li, M. Z. (2010). Effects of formula fertilization on the uptakes of nitrogen, phosphorus and potassium at maturity and yield of millet. Journal of Hebei Agricultural Sciences, 14, 62–64 72.Google Scholar
  18. Hörtenhuber, S., Piringer, G., Zollitsch, W., Lindenthal, T., & Winiwarter, W. (2014). Land use and land use change in agricultural life cycle assessments and carbon footprints—the case for regionally specific land use change versus other methods. Journal of Cleaner Production, 73, 31–39.CrossRefGoogle Scholar
  19. Huang, Y., & Tang, Y. H. (2010). An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Global Change Biology, 16, 2958–2970.Google Scholar
  20. Humphreys, J., Brye, K. R., Rector, C., & Gbur, E. E. (2018). Methane emissions from rice across a soil organic matter gradient in Alfisols of Arkansas, USA. Geoderma Regional, 15, e00200.Google Scholar
  21. IPCC (Intergovernmental Panel on Climate Change). (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Tsukuba: IGES.Google Scholar
  22. Kong, H. N., Kimochi, Y., Mizuochi, M., Inamori, R., & Inamori, Y. (2002). Study of the characteristics of CH4 and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process. The Science of the Total Environment, 290(1), 59–67.CrossRefGoogle Scholar
  23. Li, Q. X., Huang, C. C., & Pan, G. X. (2014). The study on the method of soil testing and fertilizer recommendation based on the perspective of management of resources and environment. Chinese Agricultural Science Bulletin, 30, 167–175.Google Scholar
  24. Lin, E. D., & Dudek, D. J. (2012). Method guideline for quantifying carbon sequestration and reduction in greenhouse gas emission under balanced fertilization. Beijing: China Zhijian Publishing House/China Standards Press.Google Scholar
  25. Lu, F., Wang, X., Han, B., Ouyang, Z., Duan, X., Zheng, H., & Miao, H. (2009). Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biology, 15, 281–305.CrossRefGoogle Scholar
  26. Maharjan, B., Venterea, R. T., & Rosen, C. (2014). Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate leaching. Agronomy Journal, 106, 703–714.CrossRefGoogle Scholar
  27. Malyan, S. K., Bhatia, A., Kumar, A., Gupta, D. K., Singh, R., Kumar, S. S., Tomer, R., Kumar, O., & Jain, N. (2016). Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. The Science of the Total Environment, 572, 874–896.CrossRefGoogle Scholar
  28. Michalska, A., Wojdyło, A., & Bogucka, B. (2016). The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. Journal of Food Composition and Analysis, 47, 69–75.CrossRefGoogle Scholar
  29. Ministry of Agriculture of the People’s Republic of China. (2006). Technical Specification of Balanced Fertilization (NY/T 1118-2006). China: Ministry of Agriculture of the People’s Republic of China.Google Scholar
  30. Mishra, S., Rath, A. K., Adhya, T. K., Rao, V. R., & Sethunathan, N. (1997). Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biology and Fertility of Soils, 24, 399–405.CrossRefGoogle Scholar
  31. Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., & Cleemput, O. V. (1998). Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems, 52, 225–248.CrossRefGoogle Scholar
  32. OECD. (1998). Aid and private flows fell in 1997. France: OECD.Google Scholar
  33. Pan, G. X., Zhou, P., Li, Z. P., Smith, P., Li, L. Q., Qiu, D. S., Zhang, X. H., Xu, X. B., Shen, S. Y., & Chen, X. M. (2009). Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture, Ecosystems and Environment, 131, 274–280.CrossRefGoogle Scholar
  34. Pan, G. X., Xu, X., Smith, P., Pan, W., & Lal, R. (2010). An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems and Environment, 136, 133–138.CrossRefGoogle Scholar
  35. Pan, M. C., Shen, Y. P., Yu, M. H., & Shi, L. M. (2012). The influence of the soil testing and formulated fertilization on NPK fertilizer utilization ratio of maize. Anhui Agricultural Science Bulletin, 18, 51–52.Google Scholar
  36. Paustian, K., Collins, H. P., & Paul, E. A. (1997). Management controls on soil carbon. In E. A. Paul & K. Paustian (Eds.), Soil organic matter in temperate agroecosystems (pp. 39–41). Florida: CRC Press.Google Scholar
  37. People’s Daily. (2012). Over 1.2 billion mu of soil testing and formulated fertilization area. Available from: http://finance.people.com.cn/GB/17994480.html. Accessed 27.05.12.
  38. Planting Industry Management Department of Ministry of Agriculture of the People’s Republic of China. (2011). http://www.moa.gov.cn/ztzl/ctpfsf/gzdt/201112/t2011123_02448666.htm. Accessed 30.12.11.
  39. Qiao, C. L., Liu, L. L., Hu, S. J., Compton, J. E., Greaver, T. L., & Li, Q. L. (2015). How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology, 21, 1249–1257.CrossRefGoogle Scholar
  40. Rasmussen, P. E., & Parton, W. J. (1994). Long-term effects of residue management in wheat fallow: I. Inputs, yield, and soil organic matter. Soil Science Society of America Journal, 58, 523–530.CrossRefGoogle Scholar
  41. Robinson, C. A., Cruse, R. M., & Ghaffarzadeh, M. (1996). Cropping system and nitrogen effects on Mollisol organic carbon. Soil Science Society of America Journal, 60(1), 264–269.CrossRefGoogle Scholar
  42. SAIN. (2010). UK-China project on “Improved Nutrient Management in Agriculture: a Key Contribution to the Low Carbon Economy”. Available from: http://www.sainonline.org/pages/projects/lowcarbonc.html. Accessed 25.05.17.
  43. SAS Institute. (2003). SAS Version 9.1.2. 2002–2003. Cary: SAS Institute, Inc..Google Scholar
  44. Shang, Q., Yang, X., Gao, C., Wu, P., Liu, J., Xu, Y., Shen, Q., Zou, J., & Guo, S. (2011). Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Global Change Biology, 17, 2196–2210.CrossRefGoogle Scholar
  45. Singh, S. R., Kundu, D. K., Tripathi, M. K., Dey, P., Saha, A. R., Kumar, M., Singh, I., & Mahapatra, B. S. (2015). Impact of balanced fertilization on nutrient acquisition, fibre yield of jute and soil quality in New Gangetic alluvial soils of India. Applied Soil Ecology, 92, 24–34.CrossRefGoogle Scholar
  46. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Pomanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B, 363, 789–813.CrossRefGoogle Scholar
  47. Towprayoon, S., Smakgahn, K., & Poonkaew, S. (2005). Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere, 59, 1547–1556.CrossRefGoogle Scholar
  48. Wang, C. J., Pan, G. X., Tian, Y. G., Li, L. Q., Zhang, X. H., & Han, X. J. (2010). Changes in cropland topsoil organic carbon with different fertilizations under long-term agro-ecosystem experiments across mainland China. Science China. Life Sciences, 53, 858–867.CrossRefGoogle Scholar
  49. Wang, W., Koslowski, F., Nayak, D. R., Smith, P., Saetnan, E., Ju, X., Guo, L., Hang, G., de Perthuisb, C., Lin, E., & Moran, D. (2014). Greenhouse gas mitigation in Chinese agriculture: distinguishing technical and economic potentials. Global Environmental Change, 26, 53–62.CrossRefGoogle Scholar
  50. Wang, W., Guo, L. P., Li, Y. C., Su, M., Lin, Y. B., de Perthuis, C., Ju, X. T., Lin, E. D., & Moran, D. (2015a). Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Climatic Change, 128, 57–70.CrossRefGoogle Scholar
  51. Wang, W., Lai, D. Y. F., Wang, C., Pan, T., & Zeng, C. (2015b). Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil and Tillage Research, 152, 8–16.CrossRefGoogle Scholar
  52. Wang, Y., Hu, C., Dong, W., Li, X., Zhang, Y., Qin, S., & Oenema, O. (2015c). Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agriculture, Ecosystems & Environment, 206, 33–45.CrossRefGoogle Scholar
  53. Wissing, L., Kölbl, A., Vogelsang, V., Fu, J., Cao, Z., & Kögel-Knabner, I. (2011). Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. Catena, 87, 376–385.CrossRefGoogle Scholar
  54. Wu, J. (2011). Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. European Journal of Soil Science, 62, 29–34.CrossRefGoogle Scholar
  55. Yu, Z. W. (2003). Crop cultivation. Beijing: China Agriculture Press.Google Scholar
  56. Zhang, F. S. (2006). Compendium of soil testing and fertilizer recommendation. Beijing: China Agricultural University Press.Google Scholar
  57. Zhang, A. F., Cui, L. Q., Pan, G. X., Li, L. Q., Hussain, Q., Zhang, X. H., Zheng, J. W., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 139, 469–475.CrossRefGoogle Scholar
  58. Zhang, W. F., Dou, Z. X., He, P., Ju, X. T., Powlson, D., Chadwick, D., Norse, D., Lu, Y. L., Zhang, Y., Wu, L., Chen, X. P., Cassmang, K. G., & Zhang, F. S. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. PNAS, 110, 8375–8380.CrossRefGoogle Scholar
  59. Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., Zheng, J., Zheng, J., Cheng, K., Joseph, S., & Liu, X. (2016). Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 142, 106–113.CrossRefGoogle Scholar
  60. Zhu, L., Hu, N., Yang, M., Zhan, X., & Zhang, Z. (2014). Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system. PLoS One, 9, e88900.CrossRefGoogle Scholar
  61. Zhu, L., Hu, N., Zhang, Z., Xu, J., Tao, B., & Meng, Y. (2015). Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice–wheat cropping system. Catena, 135, 283–289.CrossRefGoogle Scholar
  62. Zou, J. W., Lu, Y. Y., & Huang, Y. (2010). Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000. Environmental Pollution, 158, 631–635.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Changjiang Li
    • 1
    • 2
  • Changzhen Li
    • 1
    • 2
  • Juan Han
    • 2
  • Junli Zhang
    • 3
  • Yangfeng Wang
    • 4
  • Fei Yang
    • 4
  • Xiaoxia Wen
    • 2
    Email author
  • Yuncheng Liao
    • 2
    Email author
  1. 1.Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and ForestryHainan UniversityHaikouChina
  2. 2.College of AgronomyNorthwest A&F UniversityYanglingChina
  3. 3.Weinan City Agricultral Technology Promotion CenterWeinanChina
  4. 4.Agro-technical Extension Center of Shaanxi ProvinceXi’anChina

Personalised recommendations