Advertisement

Comparative study of different wavelet-based neural network models to predict sewage sludge quantity in wastewater treatment plant

  • Maryam Zeinolabedini
  • Mohammad NajafzadehEmail author
Article
  • 84 Downloads

Abstract

In this study, artificial neural networks (ANNs) including feed forward back propagation neural network (FFBP-NN) and the radial basis function neural network (RBF-NN) were applied to predict daily sewage sludge quantity in wastewater treatment plant (WWTP). Daily datasets of sewage sludge have been used to develop the artificial intelligence models. Six mother wavelet (W) functions were employed as a preprocessor in order to increase accuracy level of ANNs. In this way, a 4-day lags were considered as input variables to conduct training and testing stages for the proposed W-ANNs. To compare performance of W-ANNs with traditional ANNs, coefficient of correlation (R), root mean square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe efficiency coefficient (NSE) were considered. In the case of all wavelet functions, it was found that W-FFBP-NN (R = 0.99 and MAE = 5.78) and W-RBF-NN (R = 0.99 and MAE = 6.69) models had superiority to the FFBP-NN (R = 0.9 and MAE = 21.41) and RBF-NN (R = 0.9 and MAE = 20.1) models. Furthermore, the use of DMeyer function to improve ANNs indicated that W-FFBP-NN (RMSE = 7.76 and NSE = 0.98) and W-RBF-NN (RMSE = 9.35 and NSE = 0.98) approaches stood at the highest level of precision in comparison with other mother wavelet functions used to develop the FFBP-NN and RBF-NN approaches. Overall, this study proved that application of various mother wavelet functions into architecture of ANNs led to increasing accuracy of artificial neural networks for estimation of sewage sludge volume in the WWTP.

Keywords

Sewage sludge quantity Wastewater treatment plant Artificial neural networks Wavelet functions 

Notes

Acknowledgements

We would like to thank the manager of Kerman province wastewater treatment plant for providing us with the field data used in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adamowski, J., & Sun, K. (2010). Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390, 85–91.CrossRefGoogle Scholar
  2. Altunkaynak, A., & Nigussie, T. A. (2015). Prediction of daily rainfall by a hybrid wavelet-season-neuro technique. Journal of Hydrology, 529, 287–301.  https://doi.org/10.1016/j.jhydrol.2015.07.046.CrossRefGoogle Scholar
  3. Aussem, A., Campbell, J., & Murtagh, F. (1998). Wavelet-based feature extraction and decomposition strategies for financial forecasting. Journal of Computational Intelligence in Finance, 6, 5–12.Google Scholar
  4. Bateni, S. M., Jeng, D.-S., & Melville, B. W. (2007). Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers. Advances in Engineering Software, 38(2), 102–111.  https://doi.org/10.1016/j.advengsoft.2006.08.004.CrossRefGoogle Scholar
  5. Belanche, L. s. A., Valdés, J. J., Comas, J., Roda, I. R., & Poch, M. (1999). Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques. Environmental Modelling & Software, 14(5), 409–419.  https://doi.org/10.1016/S1364-8152(98)00102-9.CrossRefGoogle Scholar
  6. Boger, Z., & Guterman, H. (1990). Knowledge representation of wastewater treatment plant operating history and current state. Proceeding of the 5th International Association on Water Pollution Research and Control Workshop, Yokohama and Kyoto, Japan. Pergammon Press.Google Scholar
  7. Boniecki, P., Dach, J., Pilarski, K., & Piekarska-Boniecka, H. (2012). Artificial neural networks for modeling ammonia emissions released from sewage sludge composting. Atmospheric Environment, 57, 49–54.CrossRefGoogle Scholar
  8. Catalão, J., Pousinho, H. M. I., & Mendes, V. M. F. (2011). Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renewable Energy, 36(4), 1245–1251.CrossRefGoogle Scholar
  9. Çinar, Ö. (2005). New tool for evaluation of performance of wastewater treatment plant: artificial neural network. Process Biochemistry, 40(9), 2980–2984.  https://doi.org/10.1016/j.procbio.2005.01.012.CrossRefGoogle Scholar
  10. Cohen, A., Janssen, G., Brewster, S. D., Seeley, R., Boogertt, A. A., Graham, A. A., Mardani, M. R., Clarke, N., & Kasabov, N. K. (1997). Application of computational intelligence for on-line control of a sequencing batch reactor (SBR) at Morrinsville sewage treatment plant. Water Science and Technology, 35(10), 63–71.CrossRefGoogle Scholar
  11. Cong, Q., & Yu, W. (2018). Integrated soft sensor with wavelet neural network and adaptive weighted fusion for water quality estimation in wastewater treatment process. Measurement, 124, 436–446.CrossRefGoogle Scholar
  12. Côté, M., Grandjean, B. P. A., Lessard, P., & Thibault, J. (1995). Dynamic modelling of the activated sludge process: improving prediction using neural networks. Water Research, 29(4), 995–1004.  https://doi.org/10.1016/0043-1354(95)93250-W.CrossRefGoogle Scholar
  13. Danish, M., Jing, H., Pin, Z., Ziyang, L., & Pansheng, Q. (2016). A new drying kinetic model for sewage sludge drying in presence of CaO and NaClO. Applied Thermal Engineering, 106, 141–152.  https://doi.org/10.1016/j.applthermaleng.2016.05.191.CrossRefGoogle Scholar
  14. El-Din, A. G., & Smith, D. W. (2002). A neural network model to predict the wastewater inflow incorporating rainfall events. Water Research, 36, 1115–1126.CrossRefGoogle Scholar
  15. Fernandez de Canete, J., Del Saz-Orozco, P., Baratti, R., Mulas, M., Ruano, A., & Garcia-Cerezo, A. (2016). Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network. Expert Systems with Applications, 63, 8–19.  https://doi.org/10.1016/j.eswa.2016.06.028.CrossRefGoogle Scholar
  16. Fernandez, F. J., Seco, J. A., Ferrer, J., & Rodrigo, M. A. (2009). Use of neurofuzzy networks to improve wastewater flow-rate forecasting. Environmental Modelling & Software, 24, 686–693.CrossRefGoogle Scholar
  17. Filipović, J., Grčić, I., Bermanec, V., & Kniewald, G. (2013). Monitoring of total metal concentration in sludge samples: case study for the mechanical–biological wastewater treatment plant in Velika Gorica, Croatia. Science of the Total Environment, 447, 17–24.  https://doi.org/10.1016/j.scitotenv.2012.12.078.CrossRefGoogle Scholar
  18. Forster, C. F., & Foundation, W. E. R. (2003). Wastewater treatment and technology. Thomas Telford.Google Scholar
  19. Gontarski, C. A., Rodrigues, P. R., Mori, M., & Prenem, L. F. (2000). Simulation of an industrial wastewater treatment plant using artificial neural networks. Computers & Chemical Engineering, 24, 1719–1723.CrossRefGoogle Scholar
  20. Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J.-p., Kim, J. H., & Cho, K. H. (2015). Prediction of effluent concentration in a wastewater treatment plant using machine learning models. Journal of Environmental Sciences, 32, 90–101.  https://doi.org/10.1016/j.jes.2015.01.007.CrossRefGoogle Scholar
  21. Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919–928.  https://doi.org/10.1016/j.envsoft.2003.10.005.CrossRefGoogle Scholar
  22. Hamoda, M. F., Al-Ghusain, I. A., & Hassan, A. H. (1999). Integrated wastewater treatment plant performance evaluation using artificial neural networks. Water Science and Technology, 40(7), 55–65.  https://doi.org/10.1016/S0273-1223(99)00584-3.CrossRefGoogle Scholar
  23. Han, H.-G., Li, Y., Guo, Y.-N., & Qiao, J.-F. (2016). A soft computing method to predict sludge volume index based on a recurrent self-organizing neural network. Applied Soft Computing, 38, 477–486.  https://doi.org/10.1016/j.asoc.2015.09.051.CrossRefGoogle Scholar
  24. Han, H., Zhu, S., Qiao, J., & Guo, M. (2018). Data-driven intelligent monitoring system for key variables in wastewater treatment process. Chinese Journal of Chemical Engineering, 26(10), 2093–2101.CrossRefGoogle Scholar
  25. Hanbay, D., Turkoglu, I., & Demir, Y. (2008). Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks. Expert Systems with Applications, 34(2), 1038–1043.  https://doi.org/10.1016/j.eswa.2006.10.030.CrossRefGoogle Scholar
  26. Heidari, E., Sobati, M. A., & Movahedirad, S. (2016). Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemometrics and Intelligent Laboratory Systems, 155, 73–85.  https://doi.org/10.1016/j.chemolab.2016.03.031.CrossRefGoogle Scholar
  27. Honggui, H., Ying, L., & Junfei, Q. (2014). A fuzzy neural network approach for online fault detection in waste water treatment process. Computers and Electrical Engineering, 40(7), 2216–2226.CrossRefGoogle Scholar
  28. Hu, J., & Wang, J. (2015). Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression. Energy, 93, 1456–1466.  https://doi.org/10.1016/j.energy.2015.10.041.CrossRefGoogle Scholar
  29. Huang, Y. W., & Chen, M. Q. (2015). Artificial neural network modeling of thin layer drying behavior of municipal sewage sludge. Measurement, 73, 640–648.CrossRefGoogle Scholar
  30. Jalili Ghazizade, M., & Noor, A. R. (2008). Prediction of municipal solid waste generation by use of artificial neural network: a case study of Mashhad. International Journal of Environmental Research, 2(1), 13–22.Google Scholar
  31. Joseph, S. M., & Anto, B. P. (2012). Speech coding based on orthogonal and biorthogonal wavelet. Procedia Technology, 6, 397–404.CrossRefGoogle Scholar
  32. Kaira, G. L., & Christian, R. A. (2013). Wastewater treatment: concepts and design approach: PHI learning.Google Scholar
  33. Kasiviswanathan, K. S., He, J., Sudheer, K. P., & Tay, J.-H. (2016). Potential application of wavelet neural network ensemble to forecast streamflow for flood management. Journal of Hydrology, 536, 161–173.  https://doi.org/10.1016/j.jhydrol.2016.02.044.CrossRefGoogle Scholar
  34. Kisi, O., & Shiri, J. (2011). Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resources Management, 25(13), 3135–3152.CrossRefGoogle Scholar
  35. Kołecka, K., Gajewska, M., Obarska-Pempkowiak, H., & Rohde, D. (2017). Integrated dewatering and stabilization system as an environmentally friendly technology in sewage sludge management in Poland. Ecological Engineering, 98, 346–353.  https://doi.org/10.1016/j.ecoleng.2016.08.011.CrossRefGoogle Scholar
  36. Li, S., Li, Y., Lu, Q., Zhu, J., Yao, Y., & Bao, S. (2014). Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units. Waste Management, 34(12), 2561–2566.  https://doi.org/10.1016/j.wasman.2014.08.018.CrossRefGoogle Scholar
  37. Llorens, E., Thiery, F., Grieu, S., & Polit, M. (2008). Evaluation of WWTP discharges into a Mediterranean river using KSOM neural networks and mass balance modelling. Chemical Engineering Journal, 142, 135–146.CrossRefGoogle Scholar
  38. Maheswaran, R., & Khosa, R. (2012). Comparative study of different wavelets for hydrologic forecasting. Computers & Geosciences, 46, 284–295.  https://doi.org/10.1016/j.cageo.2011.12.015.CrossRefGoogle Scholar
  39. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.  https://doi.org/10.1109/34.192463.CrossRefGoogle Scholar
  40. Mirabi, M., Mianabadi, H., Zarghami, M., Sharifi, M. B., & Mostert, E. (2014). Risk-based evaluation of wastewater treatment projects: a case study in Niasar city, Iran. Resources, Conservation and Recycling, 93, 168–177.  https://doi.org/10.1016/j.resconrec.2014.10.002.CrossRefGoogle Scholar
  41. Mjalli, F. S., Al-Asheh, S., & Alfadala, H. E. (2007). Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. Journal of Environmental Management, 83, 329–338.CrossRefGoogle Scholar
  42. Moral, H., Aksoy, A., & Gokcay, C. F. (2008). Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Computers & Chemical Engineering, 32(10), 2471–2478.  https://doi.org/10.1016/j.compchemeng.2008.01.008.CrossRefGoogle Scholar
  43. Najafzadeh, M., & Zeinolabedini, M. (2018). Derivation of optimal equations for prediction of sewage sludge quantity using wavelet conjunction models: an environmental assessment. Environmental Science and Pollution Research, 25, 22931–22943.CrossRefGoogle Scholar
  44. Nasr, M. S., Moustafa, M. A. E., Seif, H. A. E., & Kobrosy, G. E. (2012). Application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alexandria Engineering Journal, 51, 37–43.CrossRefGoogle Scholar
  45. Noori, R., Abdoli, M. A., Ameri Ghasrodashti, A., & Jalili Ghazizade, M. (2009a). Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad. Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, 28(2), 249–258.CrossRefGoogle Scholar
  46. Noori, R., Abdoli, M. A., Farokhnia, A., & Abbasi, M. (2009b). Retracted: results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network. Expert Systems with Applications, 36(6), 9991–9999.  https://doi.org/10.1016/j.eswa.2008.12.035.CrossRefGoogle Scholar
  47. Noori, R., Karbassi, A., & Sabahi, M. S. (2010). Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. Journal of Environmental Management, 91(3), 767–771.CrossRefGoogle Scholar
  48. Oja, E. (1994). Neural networks—advantages and applications. Machine Intelligence and Pattern Recognition, 16, 359–365.CrossRefGoogle Scholar
  49. Ongen, A., Ozcan, H. K., & Arayıc, S. (2013). An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling. Journal of Hazardous Materials, 263, 361–366.CrossRefGoogle Scholar
  50. Onkal-Engin, G., Demir, I., & Engin, S. N. (2005). Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling & Software, 20, 843–850.CrossRefGoogle Scholar
  51. Pai, T. Y., Yang, P. Y., Wang, S. C., Lo, M. H., Chiang, C. F., Kuo, J. L., Chu, H. H., Su, H. C., Yu, L. F., Hu, H. C., & Chang, Y. H. (2011). Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality. Applied Mathematical Modelling, 35(8), 3674–3684.  https://doi.org/10.1016/j.apm.2011.01.019.CrossRefGoogle Scholar
  52. Partal, T., & Kisi, Ö. (2007). Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology, 342, 199–212.CrossRefGoogle Scholar
  53. Rumelhart, D. E., & McCielland. (1986). Parallel distributed processing: explorations in the microstructure of cognition. Cambridge: MIT Press.Google Scholar
  54. Safavi, S., Bateni, S. M., & Xu, T. (2015). Predicting the amount of municipal solid waste via hybrid principal component analysis-artificial neural network approach. Applied Mechanics and Materials, 768, 722–727.CrossRefGoogle Scholar
  55. Seo, Y., Kim, S., Kisi, O., & Singh, V. P. (2015). Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology, 520, 224–243.  https://doi.org/10.1016/j.jhydrol.2014.11.050.CrossRefGoogle Scholar
  56. Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737–750.CrossRefGoogle Scholar
  57. Shoaib, M., Shamseldin, A., Melville, B., & Khan, M. (2015). Runoff forecasting using hybrid wavelet gene expression programming (WGEP) Approach (Vol. 527).Google Scholar
  58. Verma, A., Wei, X., & Kusiak, A. (2013). Predicting the total suspended solids in wastewater: a data-mining approach. Engineering Applications of Artificial Intelligence, 26, 1366–1372.CrossRefGoogle Scholar
  59. Wan, J., Huang, M., Ma, Y., Guo, W., Wang, Y., Zhang, H., Li, W., & Sun, X. (2011). Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system. Applied Soft Computing, 11(3), 3238–3246.  https://doi.org/10.1016/j.asoc.2010.12.026.CrossRefGoogle Scholar
  60. White, W. R., Crabbe, A. D., Mill, H., & Station, H. R. (1973). Sediment Transport: An Appraisal of Available Methods, Hydraulics Research Station.Google Scholar
  61. Zare-Abyaneh, H. (2014). Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science & Engineering, 12(1), 1–8.CrossRefGoogle Scholar
  62. Zounemat-Kermani, M., Beheshti, A.-A., Ataie-Ashtiani, B., & Sabbagh-Yazdi, S.-R. (2009). Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Applied Soft Computing, 9(2), 746–755.  https://doi.org/10.1016/j.asoc.2008.09.006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Water Engineering, Faculty of Civil and Surveying EngineeringGraduate University of Advanced TechnologyKermanIran

Personalised recommendations