Advertisement

Inter-annual variability of phytoplankton assemblage and Tetraspora gelatinosa bloom from anthropogenically affected harbour, Veraval, India

  • Revati Hardikar
  • C. K. HarideviEmail author
  • Anirudh Ram
  • Rakhee Khandeparker
  • Ujwala Amberkar
  • Meena Chauhan
Article
  • 38 Downloads

Abstract

Veraval, one of Asia’s largest fishing harbours, situated on the south-west coast of Gujarat, India, has transformed into an industrial hub dominated by fish processing units, rayon manufacturing industry, and transportation facilities. The study investigated the high abundance of Tetraspora gelatinosa along with the augmented level of ammonia in the harbour. The high concentration of ammonia was associated with the accumulation of sewage, industrial, and fishery wastes in the harbour. Low-energy expenditure associated with assimilation of ammonia made it a principal nitrogen source for Tetraspora gelatinosa growth. Even though ammonia is the preferred nitrogen source by phytoplankton, elevated concentration causes toxicity to the cells. Augmented level of ammonia and high TSS hampered the efficiency of PS II, thereby impeding the chlorophyll a degradation and oxygen evolution. Built of the organic load from fish processing industries as well as domestic waste along with a reduction in photosynthetic oxygen evolution has made the harbour hypoxic (DO < 1.6 mg L−1)/anoxic (DO = 0.0 mg L−1). Shannon-Wiener diversity index as a pollution index suggested that the inner harbour area was highly polluted as the diversity ranged from 0.01 to 1.57. Whereas, the outer harbour (Near-shore and off-shore) with less anthropogenic effect recorded high diversity (av. 2.17) suggesting a healthy environment.

Keywords

Phytoplankton Tetraspora gelatinosa bloom Hypoxia Harbour India 

Notes

Acknowledgements

We are grateful to the director, CSIR-NIO, for facilitating the study. The authors would like to thank, former Scientist in Charge Dr. S. N. Gajbhiye and present Scientist in Charge Dr. A. K. Chaubey of regional centre Mumbai for their immense support in carrying out the research. We also express our sincere gratitude to three anonymous reviewers for their valuable comments and suggestions. Financial support from Coastal Ocean Monitoring and Predicting System (COMAPS), MoES, and OLP1708 are gratefully acknowledged. NIO contribution number is 6341.

References

  1. Achary, M. S., Panigrahi, S., Satpathy, K. K., Sahu, G., Mohanty, A. K., Selvanayagam, M., & Panigrahy, R. C. (2014). Nutrient dynamics and seasonal variation of phytoplankton assemblages in the coastal waters of southwest Bay of Bengal. Environmental Monitoring and Assessment, 186, 5681–5695.CrossRefGoogle Scholar
  2. APHA (American Public Health Association). (2005). Standard methods for examination of water and waste water. Washington.Google Scholar
  3. Baliarsingh, S. K., Sahu, B. K., Srichandan, S., & Sahu, K. C. (2012). Seasonal variation of phytoplankton community in navigable channel of Gopalpur Port, East Coast of India: a taxonomic study. International Journal of Modern Botany, 2, 40–46.CrossRefGoogle Scholar
  4. Balloch, D., Davies, C. E., Jones, F. H. (1976). Biological assessment of water quality in three British rivers: the North Esk (Scotland), the Ivel (England) and the Taf (Wales). Water Poll Cont (UK).Google Scholar
  5. Bhadja, P., Poriya, P., Kundu, R. (2014). Community structure and distribution pattern of intertidal invertebrate macrofauna at some anthropogenically influenced coasts of Kathiawar peninsula (India). Advances in Ecology, 2014.Google Scholar
  6. Bistricki, T., & Munawar, M. (1978). A rapid preparation method for scanning electron microscopy of Lugol preserved algae. Journal of Microscopy, 114, 215–218.CrossRefGoogle Scholar
  7. Borade, S., Dhawde, R., Maloo, A., Gajbhiye, S. N., Ram, A., & Dastager, S. G. (2015). Assessment of enteric bacterial indicators and correlation with physico-chemical parameters in Veraval coast, India. Indian Journal of Geo-Marine Sciences, 44, 501–507.Google Scholar
  8. Chalar, G. (2009). The use of phytoplankton patterns of diversity for algal bloom management. Limnologica-Ecology and Management of Inland Waters, 39, 200–208.CrossRefGoogle Scholar
  9. Clarke, K. R., Warwick, R. M., (1994). Change in marine communities. Plymouth Marine Laboratory.Google Scholar
  10. CPCB (2009–2010). Status of water supply, waste water generation and treatment in class I cities and class II towns of India in control of urban pollution series. CUPS/70/2009–10.Google Scholar
  11. Dayala, V. T., Salas, P. M., & Sujatha, C. H. (2014). Spatial and seasonal variations of phytoplankton species and their relationship to physico-chemical variables in the Cochin estuarine waters, Southwest coast of India. Indian Journal of Geo-Marine Sciences, 43, 943–953.Google Scholar
  12. Dean, V. A. (2017). Water and wastewater examination manual (p. 264). Routledge publisher, ISBN 1351405071.Google Scholar
  13. Desikachary, T. V. (1959). Cyanophyta. New Delhi: Indian Council of Agricultural Research.Google Scholar
  14. Diaz, R. J. (2001). Overview of hypoxia around the world. Journal of Environmental Quality, 30, 275–281.CrossRefGoogle Scholar
  15. Dortch, Q. (1990). The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecology Progress Series, 61, 183–201.CrossRefGoogle Scholar
  16. Drath, M., Kloft, N., Batschauer, A., Marin, K., Novak, J., & Forchhammer, K. (2008). Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiology, 147, 206–215.CrossRefGoogle Scholar
  17. Eby, L. A., & Crowder, L. B. (2002). Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences, 59, 952–965.CrossRefGoogle Scholar
  18. Eppley, R. W., Coatsworth, J. L., & Solórzano, L. (1969). Studies of nitrate reductase in marine phytoplankton. Limnology and Oceanography, 14, 194–205.CrossRefGoogle Scholar
  19. Falkowski, P. G., & Owens, T. G. (1978). Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton. Marine Biology, 45, 289–295.CrossRefGoogle Scholar
  20. Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., & Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science, 88, 442–449.CrossRefGoogle Scholar
  21. Field, J. G., Clarke, K. R., & Warwick, R. M. (1982). A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series, 8, 37–52.CrossRefGoogle Scholar
  22. Gao, X., & Song, J. (2005). Phytoplankton distributions and their relationship with the environment in the Changjiang estuary, China. Marine Pollution Bulletin, 50, 327–335.CrossRefGoogle Scholar
  23. Ghazala, B., Shameel, M., Choudhary, M. I., Shahzad, S., & Leghari, S. M. (2004). Phycochemistry and bioactivity of Tetraspora (Volvocophyta) from Sindh. Pakistan Journal of Botany, 36, 531–548.Google Scholar
  24. Giani, M., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., & Umani, S. F. (2012). Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuarine, Coastal and Shelf Science, 115, 1–13.CrossRefGoogle Scholar
  25. Gilbert, D., Rabalais, N. N., Diaz, R. J., & Zhang, J. (2009). Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences Discussions, 6, 9127–9160.CrossRefGoogle Scholar
  26. Glibert, P. M., & Goldman, J. C. (1981). Rapid ammonium uptake by marine phytoplankton. Mar. Ecol. Berlin, 2, 25–31.Google Scholar
  27. Glibert, P. M., Wilkerson, F. P., Dugdale, R. C., Raven, J. A., Dupont, C. L., Leavitt, P. R., Parker, A. E., Burkholder, J. M., & Kana, T. M. (2016). Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnology and Oceanography, 61, 165–197.CrossRefGoogle Scholar
  28. Gomes, H., Goes, J. I., Matondkar, S. P., Buskey, E. J., Basu, S., Parab, S., & Thoppil, P. (2014). Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature Communications, 5, 4862.CrossRefGoogle Scholar
  29. Graneli, E., Weberg, M., & Salomon, P. S. (2008). Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae, 8, 94–102.CrossRefGoogle Scholar
  30. Grasshoff, K. (1983). Methods of sea water analysis (2nd ed.). Veinheim: Verlag Chemie.Google Scholar
  31. Gutowski, A. N. T. J. E., Foerster, J. U. L. I. A., & Schaumburg, J. O. C. H. E. N. (2004). The use of benthic algae, excluding diatoms and Charales, for the asessment of the ecological status of running fresh waters: a case history from Germany. Oceanological and Hydrobiological Studies, 33(2), 3–15.Google Scholar
  32. Hagy, J. D., Boynton, W. R., Keefe, C. W., & Wood, K. V. (2004). Hypoxia in Chesapeake Bay, 1950–2001: longterm change in relation to nutrient loading and river flow. Estuaries, 27, 634–658.CrossRefGoogle Scholar
  33. Hardikar, R., Haridevi, C. K., Chowdhury, M., Shinde, N., Ram, A., Rokade, M. A., & Rakesh, P. S. (2017). Seasonal distribution of phytoplankton and its association with physico-chemical parameters in coastal waters of Malvan, west coast of India. Environmental Monitoring and Assessment, 189(4), 151.CrossRefGoogle Scholar
  34. Harnstrom, K., Karunasagar, I., & Godhe, A. (2009). Phytoplankton species assemblages and their relationship to hydrographic factors — a study at the old port in Mangalore, coastal Arabian Sea. Indian Journal of Marine Science, 38, 234–234.Google Scholar
  35. Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., & Billen, G. (2011). Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9, 18–26.CrossRefGoogle Scholar
  36. Ismael, A. A. (2003). Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the Harbour of Alexandria, Egypt. Journal of Plankton Research, 25, 193–202.CrossRefGoogle Scholar
  37. Jugnu, R. (2006). Studies on the prevalence of algal blooms along Kerala coast, India.Google Scholar
  38. Kaparapu, J., Rao, G. N. (2013). Phytoplankton assemblages associated with water quality parameters in Meghadrigedda Reservoir of Visakhapatnam, Andhra Pradesh, India.Google Scholar
  39. Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D., & Hagy, J. D. (2009). Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences, 6, 2985–3008.CrossRefGoogle Scholar
  40. Labib, W. (2002). Phytoplankton variability in the Eastern Harbour (alexandria, Egypt). Egyptian Journal of Aquatic Biology and Fisheries, 6, 75–102.CrossRefGoogle Scholar
  41. Lohar, D. N., Korekar, S. L. (2015). Diversity of Chlorophyta in Freshwater Lakes of Sangli (MS) India. In National Conference on Advances in Bioscience & Environmental Science: Present & Future (ABES) (p. 127).Google Scholar
  42. Majithiya, D., Yadav, A., & Ram, A. (2017). Behaviour of trace metals in the anoxic environment of Veraval Harbour, India. Marine Pollution Bulletin, 129, 645–654.CrossRefGoogle Scholar
  43. Malik, D. S., & Bharti, U. (2012). Status of plankton diversity and biological productivity of Sahastradhara stream at Uttarakhand, India. Journal of Applied and Natural Science, 4, 96–103.CrossRefGoogle Scholar
  44. Mandal, S. K., Patel, V. R., Temkar, G., George, B. M., & Raman, M. (2015). Bio-optic characterization of Discosphaera tubifer bloom occurs in an overcrowded fishing Harbour at Veraval, India. Environmental Monitoring and Assessment, 187, 597.CrossRefGoogle Scholar
  45. Maneeruttanarungroj, C., Lindblad, P., & Incharoensakdi, A. (2010). A newly isolated green alga, Tetraspora CU2551, from Thailand with efficient hydrogen production. International Journal of Hydrogen Energy, 35, 13193–13199.CrossRefGoogle Scholar
  46. Markou, G., Vandamme, D., & Muylaert, K. (2014). Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresource Technology, 166, 259–265.CrossRefGoogle Scholar
  47. Markou, G., Depraetere, O., & Muylaert, K. (2016). Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: a study on chlorophyll fluorescence and electron transport. Algal Research, 16, 449–457.CrossRefGoogle Scholar
  48. McCarthy, J. J., Taylor, W. R., & Taft, J. L. (1977). Nitrogenous nutrition of the plankton in the Chesapeake Bay, nutrient availability and phytoplankton preferences. Limnology and Oceanography, 22, 996–1011.CrossRefGoogle Scholar
  49. Middelburg, J. J., & Levin, L. A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6, 1273–1293.CrossRefGoogle Scholar
  50. Nagengast, B., kueznskakippen, T. N. (2014). Relation between chlorophyll and phaeophytin as indicator of disturbances in environment of flood plains ponds of the Warta River (Poland). Internation conference Wetland, “Wetland biodiversity and services: Tool for socio-ecological development” IX European wetland congress and 6 European pond conservation network, Spain, Volume: Book Abstract-169.Google Scholar
  51. NIO. (2014). Report of Monitoring of Environmental Quality off Veraval.Google Scholar
  52. NIO. (2015). Report of Monitoring of Environmental Quality off Veraval.Google Scholar
  53. Olsen, P. S., & Mahoney, J. B. (2001). Phytoplankton in the Barnegat Bay—Little Egg Harbour estuarine system: species composition and picoplankton bloom development. Journal of Coastal Research, 115–143.Google Scholar
  54. Paasche, E. (1971). Effect of ammonia and nitrate on growth, photosynthesis, and ribulose diphosphate carboxylase content of Dunaliella tertiolecta. Physiologia Plantarum, 25, 294–299.CrossRefGoogle Scholar
  55. Patil, J. S., & Anil, A. C. (2015). Effect of monsoonal perturbations on the occurrence of phytoplankton blooms in a tropical bay. Marine Ecology Progress Series, 530, 77–92.CrossRefGoogle Scholar
  56. Paerl, H. W., Pinckney, J. L., Fear, J. M., & Peierls, B. L. (1998). Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series, 166, 17–25.Google Scholar
  57. Ram, A., Jaiswar, J. R., Rokade, M. A., Bharti, S., Vishwasrao, C., & Majithiya, D. (2014). Nutrients, hypoxia and Mass Fishkill events in Tapi Estuary, India. Estuarine, Coastal and Shelf Science, 148, 48–58.CrossRefGoogle Scholar
  58. Ramaiah, N., Ramaiah, N., & Nair, V. R. (1998). Phytoplankton characteristics in a polluted Bombay Harbour-Thana-Bassein creek estuarine complex. Indian Journal of Geo-Marine Sciences, 27, 281–285.Google Scholar
  59. Ranjan, G., Singh, N. P., & Singh, R. B. (2007). Physico-chemical characteristics of Ghariyarwa pond of Birganj, Nepal in relation to growth of phytoplankton. Nature, Environment and Pollution Technology, 6(4), 629.Google Scholar
  60. Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? In Phytoplankton and trophic gradients (pp. 11–26). Springer Netherlands.Google Scholar
  61. Richter, D., Matuła, J., & Pietryka, M. (2014). The northernmost populations of T. gelatinosa (Chlorophyta) from Spitsbergen. Polish Polar Research, 35, 521–538.CrossRefGoogle Scholar
  62. Satoh, F., Hamasaki, K., Toda, T., & Taguchi, S. (2000). Summer phytoplankton bloom in Manazuru Harbour, Sagami Bay, central Japan. Plankton Biology and Ecology, 47, 73–79.Google Scholar
  63. Scavia, D., Rabalais, N. N., Turner, R. E., Justić, D., & Wiseman, W. J. (2003). Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology and Oceanography, 48, 951–956.CrossRefGoogle Scholar
  64. Schnetzer, A., Miller, P. E., Schaffner, R. A., Stauffer, B. A., Jones, B. H., Weisberg, S. B., & Caron, D. A. (2007). Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los Angeles Harbour areas of the Southern California Bight, 2003–2004. Harmful Algae, 6, 372–387.CrossRefGoogle Scholar
  65. Seitzinger, S. P., Mayorga, E., Bouwman, A. F., Kroeze, C., Beusen, A. H. W., Billen, G., & Harrison, J. A. (2010). Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cycles, 24.Google Scholar
  66. Shanthala, M., Hosmani, S. P., & Hosetti, B. B. (2009). Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka State, India. Environmental Monitoring and Assessment, 151, 437–443.CrossRefGoogle Scholar
  67. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139.CrossRefGoogle Scholar
  68. Smith, V. H., Joye, S. B., & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51, 351–355.CrossRefGoogle Scholar
  69. Strickland, J. D. H., Parsons, T. R. (1972). In: A practical handbook of sea water analysis. Fish Res Board Canadian Bull (2nd ed.) Ottawa.Google Scholar
  70. Subha Rao, D. V. (1969). Asterionella japonica bloom and discoloration off Waltair, Bay of Bengal. Limnology and Oceanography, 14, 632–634.CrossRefGoogle Scholar
  71. Subrahmanyan, R. (1946). A systematic account of the madras coast. Proceedings of the Indiana Academy of Sciences, 24, 85–197.Google Scholar
  72. Sundararajan, S., Khadanga, M. K., Kumar, J. P. P. J., Raghumaran, S., Vijaya, R., & Jena, B. K. (2017). Ecological risk assessment of trace metal accumulation in sediments of Veraval Harbor, Gujarat, Arabian Sea. Marine Pollution Bulletin, 114(1), 592–601.CrossRefGoogle Scholar
  73. Syrett, P. J., & Morris, I. (1963). The inhibition of nitrate assimilation by ammonium in Chlorella. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects, 67, 566–575.CrossRefGoogle Scholar
  74. Tam, N. F. Y., & Wong, Y. S. (1996). Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environmental Pollution, 94, 283–291.CrossRefGoogle Scholar
  75. Testa, J. M., & Kemp, W. M. (2012). Hypoxia induced shifts in nitrogen and phosphorus cycling in Chesapeake Bay. Limnology and Oceanography, 57, 835–850.CrossRefGoogle Scholar
  76. Tomas, C. R. (Ed.). (1997). Identifying marine phytoplankton. California: Academic Press.Google Scholar
  77. Toppo, K., & Suseela, M. R. (2013). Enumeration of fresh water algal flora of Ranchi, Jharkhand, India. Journal of the Indian Botanical Society, 92, 89–96.Google Scholar
  78. UNESCO. (1994). Protocols for joint global ocean flux study. UNESCO.Google Scholar
  79. Vinocur, A., & Pizarro, H. (2000). Microbial mats of twenty-six lakes from Potter Peninsula, King George island, Antarctica. Hydrobiologia, 437(1–3), 171–185.CrossRefGoogle Scholar
  80. Wang, X. C., Chen, R. F., & Gardner, G. B. (2004). Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico. Marine Chemistry, 89(1–4), 241–256.CrossRefGoogle Scholar
  81. Wang, B., Chen, J., Jin, H., Li, H., Huang, D., & Cai, W. J. (2017). Diatom bloom derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence. Limnology and Oceanography, 62, 1552–1569.CrossRefGoogle Scholar
  82. Wright, J. J., Konwar, K. M., & Hallam, S. J. (2012). Microbial ecology of expanding oxygen minimum zones. Nature Reviews. Microbiology, 10, 381–394.CrossRefGoogle Scholar
  83. Yin, K., & Harrison, P. J. (2007). Influence of the Pearl River estuary and vertical mixing in Victoria Harbour on water quality in relation to eutrophication impacts in Hong Kong waters. Marine Pollution Bulletin, 54, 646–656.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Revati Hardikar
    • 1
  • C. K. Haridevi
    • 1
    Email author
  • Anirudh Ram
    • 1
  • Rakhee Khandeparker
    • 2
  • Ujwala Amberkar
    • 2
  • Meena Chauhan
    • 1
  1. 1.National Institute of Oceanography (NIO), Regional Centre – MumbaiMumbaiIndia
  2. 2.National Institute of Oceanography (NIO), Headquarter – GoaDona PaulaIndia

Personalised recommendations