Advertisement

Clay beads as artificial trapping matrices for monitoring bacterial distribution among urban stormwater infiltration systems and their connected aquifers

  • Florian Mermillod-Blondin
  • J. Voisin
  • L. Marjolet
  • P. Marmonier
  • B. Cournoyer
Article

Abstract

Stormwater infiltration systems (SIS) have been developed to limit surface runoff and flooding in urban areas. The impacts of such practices on the ecological and biological quality of groundwater ecosystems remain poorly studied due to the lack of efficient methodologies to assess microbiological quality of aquifers. In the present study, a monitoring method based on the incubation of artificial matrices (clay beads) is presented to evaluate microbial biomass, microbial activities, and bacterial community structure. Four microbial variables (biomass, dehydrogenase and hydrolytic activities, bacterial community structures) were measured on clay beads incubated in three urban water types (stormwater surface runoffs, SIS-impacted and non-impacted groundwaters) for six SIS. Analyses based on next-generation sequencing (NGS) of partial rrs (16S rRNA) PCR products (V5-V6) were used to compare bacterial community structures of biofilms on clay beads after 10 days of incubation with those of waters collected from the same sampling points at three occasions. Biofilm biomass and activities on clay beads were indicative of nutrient transfers from surface to SIS-impacted groundwaters. Biofilms allowed impacts of SIS on groundwater bacterial community structures to be determined. Although bacterial communities on clay beads did not perfectly match those of waters, clay beads captured the most abundant bacterial taxa. They also captured bacterial taxa that were not detected in waters collected at three occasions during the incubation, demonstrating the integrative character of this approach. Monitoring biofilms on clay beads also allowed the tracking of bacterial genera containing species representing health concerns.

Keywords

Infiltration basins Environmental monitoring Microbial biomass and activity Next generation sequencing (NGS) Metabarcoding 16S rRNA 

Notes

Acknowledgments

This work was supported by l’Agence Nationale de la Recherche [ANR-16-CE32-0006 FROG], Lyon Metropole within the framework of the experimental observatory for urban hydrology (OTHU, http://www.graie.org/othu/), and the French national research program for environmental and occupational health of Anses under the terms of project “Iouqmer” EST 2016/1/120. We thank Félix Vallier, Antonin Vienney, and Laurent Simon for support and advices during field and laboratory work.

Supplementary material

10661_2019_7190_MOESM1_ESM.xlsx (8.6 mb)
Supplementary Table 1 (XLSX 8775 kb)

References

  1. Alfreider, A., Krössbacher, M., & Psenner, R. (1997). Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Research, 31, 832–840.CrossRefGoogle Scholar
  2. Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.Google Scholar
  3. Battin, T. J. (1997). Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms. Science of the Total Environment, 198, 51–60.CrossRefGoogle Scholar
  4. Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14, 251–263.CrossRefGoogle Scholar
  5. Bernardin-Souibgui, C., Barraud, S., Bourgeois, E., Aubin, J. B., Bécouze-Lareure, C., Wiest, L., Marjolet, L., Colinon, C., Lipeme-Kouyi, G., Cournoyer, B., & Blaha, D. (2018). Incidence of hydrological, chemical, and physical constraints on bacterial pathogens, Nocardia cells, and fecal indicator bacteria trapped in an urban stormwater detention basin in Chassieu, France. Environmental Science and Pollution Research, 25, 24860–24881.CrossRefGoogle Scholar
  6. Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13, 20–26.CrossRefGoogle Scholar
  7. Chapelle, F. H. (2001). Ground-water microbiology and geochemistry (2nd ed.). New York: Wiley.Google Scholar
  8. Claassen, H. C. (1982). Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer (no. 82–102). US Geological: Survey.Google Scholar
  9. Claret, C. (1998). Hyporheic biofilm development on artificial substrata, as a tool for assessing trophic status of aquatic systems: First results. Annales de Limnologie – International Journal of Limnology, 34, 119–128.CrossRefGoogle Scholar
  10. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Reviews in Microbiology, 49, 711–745.CrossRefGoogle Scholar
  11. Crump, B. C., Armbrust, E. V., & Baross, J. A. (1999). Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology, 65, 3192–3204.Google Scholar
  12. Danielopol, D. L., Gibert, J., Griebler, C., Gunatilaka, A., Hahn, H. J., Messana, G., Notenboom, J., & Sket, B. (2004). Incorporating ecological perspectives in European groundwater management policy. Environmental Conservation, 31, 185–189.CrossRefGoogle Scholar
  13. Datry, T., Malard, F., & Gibert, J. (2004). Dynamics of solutes and dissolved oxygen in shallow urban groundwater below a stormwater infiltration basin. Science of the Total Environment, 329, 215–229.CrossRefGoogle Scholar
  14. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.CrossRefGoogle Scholar
  15. European Groundwater Directive, EU-GWD. (2006). Directive 2006/118 of the European parliament and the council of the 23 October 2006. Official Journal of the European Communities, L372, 371–392.Google Scholar
  16. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.-L., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12, 525–542.CrossRefGoogle Scholar
  17. Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine, A. D., Ashbolt, N. J., & Santo Domingo, J. W. (2013). Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiology, 13, 146.  https://doi.org/10.1186/1471-2180-13-146.CrossRefGoogle Scholar
  18. Fontvieille, D. A., Outaguerouine, A., & Thevenot, D. R. (1992). Fluorescein diacetate hydrolysis as a measure of microbial activity in aquatic systems: Application to activated sludges. Environmental Technology, 13, 531–540.CrossRefGoogle Scholar
  19. Foulquier, A. (2009). Ecologie fonctionnelle dans les nappes phréatiques: liens entre flux de matière organique, activité et diversité biologiques. Doctoral thesis, University Lyon 1, 259 pp.Google Scholar
  20. Foulquier, A., Malard, F., Barraud, S., & Gibert, J. (2009). Thermal influence of urban groundwater recharge from stormwater infiltration basins. Hydrological Processes, 23, 1701–1713.CrossRefGoogle Scholar
  21. Foulquier, A., Malard, F., Mermillod-Blondin, F., Datry, T., Simon, L., Montuelle, B., & Gibert, J. (2010). Change in dissolved organic carbon and oxygen at the water table region of an aquifer recharged with stormwater: Biological uptake or mixing? Biogeochemistry, 99, 31–47.CrossRefGoogle Scholar
  22. Goldscheider, N., Hunkeler, D., & Rossi, P. (2006). Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeology Journal, 14, 926–941.CrossRefGoogle Scholar
  23. Grasshoff, K., Ehrhardt, M., & Kremling, K. (1999). Methods of seawater analysis (3rd ed.). Weinheim; New York; Chiester; Brisbane; Singapore; Toronto: Wiley-VCH.CrossRefGoogle Scholar
  24. Griebler, C., & Avramov, M. (2015). Groundwater ecosystem services: A review. Freshwater Science, 34, 355–367.CrossRefGoogle Scholar
  25. Griebler, C., Mindl, B., Slezak, D., & Geiger-Kaiser, M. (2002). Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquatic Microbial Ecology, 28, 117–129.CrossRefGoogle Scholar
  26. Griebler, C., Stein, H., Kellermann, C., Berkhoff, S., Brielmann, H., Schmidt, S., Selesi, D., Steube, C., Fuchs, A., & Hahn, H. J. (2010). Ecological assessment of groundwater ecosystems—Vision or illusion? Ecological Engineering, 36, 1174–1190.CrossRefGoogle Scholar
  27. Griebler, C., Malard, F., & Lefébure, T. (2014). Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Current Opinion in Biotechnology, 27, 159–167.CrossRefGoogle Scholar
  28. Hahn, H. J. (2006). The GW-Fauna-index: A first approach to a quantitative ecological assessment of groundwater habitats. Limnologica-Ecology and Management of Inland Waters, 36, 119–137.CrossRefGoogle Scholar
  29. Houri-Davignon, C., Relexans, J.-C., & Etcheber, H. (1989). Measurement of actual electron transport system (ETS) activity in marine sediments by incubation with INT. Environmental Technology Letters, 10, 91–100.CrossRefGoogle Scholar
  30. Humphreys, W. F. (2009). Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeology Journal, 17, 5–21.CrossRefGoogle Scholar
  31. Iribar, A., Sanchez-Perez, J. M., Lyautey, E., & Garabétian, F. (2008). Differentiated free-living and sediment-attached bacterial community structure inside and outside denitrification hotspots in the river-groundwater interface. Hydrobiologia, 598, 109–121.CrossRefGoogle Scholar
  32. Iribar, A., Hallin, S., Sanchez-Pérez, J. M., Enwall, K., Poulet, N., & Garabétian, F. (2015). Potential denitrification rates are spatially linked to colonization patterns of nosZ genotypes in an alluvial wetland. Ecological Engineering, 80, 191–197.CrossRefGoogle Scholar
  33. Jeng, H. C., England, A. J., & Bradford, H. B. (2005). Indicator organisms associated with stormwater suspended particles and estuarine sediment. Journal of Environmental Science and Health, 40, 779–791.CrossRefGoogle Scholar
  34. Korbel, K. L., & Hose, G. C. (2011). A tiered framework for assessing groundwater ecosystem health. Hydrobiologia, 661, 329–349.CrossRefGoogle Scholar
  35. Korbel, K. L., & Hose, G. C. (2017). The weighted groundwater health index: Improving the monitoring and management of groundwater resources. Ecological Indicators, 75, 164–181.CrossRefGoogle Scholar
  36. Korbel, K., Chariton, A., Stephenson, S., Greenfield, P., & Hose, G. C. (2017). Wells provide a distorted view of life in the aquifer: Implications for sampling, monitoring and assessment of groundwater ecosystems. Scientific Reports, 7, 40702.CrossRefGoogle Scholar
  37. Marsalek, J., & Chocat, B. (2002). International report: Stormwater management. Water Science and Technology, 46, 1–17.CrossRefGoogle Scholar
  38. Marti, R., Bécouze-Lareure, C., Ribun, S., Marjolet, L., Souibgui, C. B., Aubin, J. B., Lipeme Kouyi, G., Wiest, L., Blaha, D., & Cournoyer, B. (2017). Bacteriome genetic structures of urban deposits are indicative of their origin and impacted by chemical pollutants. Scientific Reports, 7, 13219.CrossRefGoogle Scholar
  39. Mermillod-Blondin, F., Foulquier, A., Maazouzi, C., Navel, S., Negrutiu, Y., Vienney, A., Simon, L., & Marmonier, P. (2013). Ecological assessment of groundwater trophic status by using artificial substrates to monitor biofilm growth and activity. Ecological Indicators, 25, 230–238.CrossRefGoogle Scholar
  40. Mermillod-Blondin, F., Simon, L., Maazouzi, C., Foulquier, A., Delolme, C., & Marmonier, P. (2015). Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency. Water Research, 81, 27–37.CrossRefGoogle Scholar
  41. Niemczynowicz, J. (1999). Urban hydrology and water management—present and future challenges. Urban Water, 1, 1–14.CrossRefGoogle Scholar
  42. Nogales, B., Timmis, K. N., Nedwell, D. B., & Osborn, A. M. (2002). Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Applied and Environmental Microbiology, 68, 5017–5025.CrossRefGoogle Scholar
  43. Oksanen, J., Kindt, R., Legendre, P., & O’Hara, B. V. (2007). The vegan package. Community ecology package, R package version 1. pp. 8–5.Google Scholar
  44. Pabich, W. J., Valiela, I., & Hemond, H. F. (2001). Relationship between DOC concentration and vadose zone thickness and depth below the water table in groundwater of Cape Cod, U.S.A. Biogeochemistry, 553, 247–268.CrossRefGoogle Scholar
  45. Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 83, 346–356.CrossRefGoogle Scholar
  46. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.CrossRefGoogle Scholar
  47. Rösel, S., & Grossart, H.-P. (2012). Contrasting dynamics in activity and community composition of free-living and particle-associated bacteria in spring. Aquatic Microbial Ecology, 66, 169–181.CrossRefGoogle Scholar
  48. Schloss, P. D., & Westcott, S. L. (2011). Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and Environmental Microbiology, 77, 3219–3226.CrossRefGoogle Scholar
  49. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.CrossRefGoogle Scholar
  50. Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One, 6, e27310.CrossRefGoogle Scholar
  51. Sébastian, C., Barraud, S., Ribun, S., Zoropogui, A., Blaha, D., Becouze-Lareure, C., Lipeme Kouyi, G., & Cournoyer, B. (2014). Accumulated sediments in a detention basin: Chemical and microbial hazard assessment linked to hydrological processes. Environmental Science and Pollution Research, 21, 5367–5378.CrossRefGoogle Scholar
  52. Servais, P., Anzil, A., & Ventresque, C. (1989). Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology, 55, 2732–2734.Google Scholar
  53. Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2, 263–275.CrossRefGoogle Scholar
  54. Stein, H., Kellermann, C., Schmidt, S. I., Brielmann, H., Steube, C., Berkhoff, S. E., Fuchs, A., Hahn, H. J., Thulin, B., & Griebler, C. (2010). The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. Journal of Environmental Monitoring, 12, 242–254.CrossRefGoogle Scholar
  55. Steube, C., Richter, S., & Griebler, C. (2009). First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeology Journal, 17, 23–35.CrossRefGoogle Scholar
  56. Voisin, J. 2017. Influence des pratiques de recharge des aquifères par des eaux pluviales sur les communautés microbiennes des nappes phréatiques. Doctoral thesis, University Lyon 1, 196 pp.Google Scholar
  57. Voisin, J., Cournoyer, B., & Mermillod-Blondin, F. (2015). Utilisation de billes de verre comme substrats artificiels pour la caractérisation des communautés microbiennes dans les nappes phréatiques : mise au point méthodologique. La Houille Blanche, 4, 52–57.CrossRefGoogle Scholar
  58. Voisin, J., Cournoyer, B., & Mermillod-Blondin, F. (2016). Assessment of artificial substrates for evaluating groundwater microbial quality. Ecological Indicators, 71, 577–586.CrossRefGoogle Scholar
  59. Voisin, J., Cournoyer, B., Vienney, A., & Mermillod-Blondin, F. (2018). Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater. Science of the Total Environment, 637-638, 1496–1507.Google Scholar
  60. Wang, Q. (2007). Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267.CrossRefGoogle Scholar
  61. Williamson, W. M., Close, M. E., Leonard, M. M., Webber, J. B., & Lin, S. (2012). Groundwater biofilm dynamics grown in situ along a nutrient gradient. Groundwater, 50, 690–703.CrossRefGoogle Scholar
  62. Winiarski, T., Bedell, J. P., Delolme, C., & Perrodin, Y. (2006). The impact of stormwater on a soil profile in an infiltration basin. Hydrogeology Journal, 14, 1244–1251.CrossRefGoogle Scholar
  63. Zhou, Y., Kellermann, C., & Griebler, C. (2012). Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiology Ecology, 81, 230–242.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNAVilleurbanneFrance
  2. 2.UMR Ecologie Microbienne, Research Team “Bacterial Opportunistic Pathogens and Environment”, Université Lyon 1 & VetAgro Sup, CNRS 5557, INRA 1418Univ LyonMarcy L’EtoileFrance

Personalised recommendations