Advertisement

Assessment of pollution biomarker and stable isotope data in Mytilus galloprovincialis tissues

  • Şükran Yalçın ÖzdilekEmail author
  • Neslihan Demir
  • Selin Ertürk Gürkan
Article
  • 49 Downloads

Abstract

Superoxide dismutase (SOD) is one of the antioxidant defense enzymes in mussels and converts the superoxide anion into hydrogen peroxide and this enzyme is used as biomarkers of oxidative damage. As well as many topics in ecology, stable isotopes are also signature for organic and heavy metal pollution in aquatic ecosystems. This study aims to compare the stable carbon and nitrogen values of different mussel tissues and the changes on the SOD values of the same tissues in order to understand the relationship between two mechanisms of bioindicator processes of physiological response of mussel to pollution. The changes in SOD activity in the gill, hepatopancreas, and mantle tissues of Mytilus galloprovincialis with δ13C and δ15N isotopes were assessed in two locations (Kepez and Güzelyalı) in Çanakkale. The SOD values of mussel samples were found as the gill > hepatopancreas > mantle collected from Kepez and the gill > hepatopancreas collected from Güzelyalı. There were no significant differences among the mean SOD values of different tissues. There was enrichment both in nitrogen and carbon isotope values of hepatopancreas tissues both in Kepez and Güzelyalı samples. There was a negative correlation between both isotope values and SOD values of samples. As well as SOD values, the isotopic composition of particularly hepatopancreas tissue is a good indicator for evaluation of pollution.

Keywords

Bioindicator δ13δ15Antioxidant Mussel 

Notes

References

  1. Akkuş, G. (2016). Çanakkale Boğazı (Kepez) Midye [Mytilus galloprovincialis (Lamarck, 1819)] Örneklerinde Ağır Metal (Cd, Pb, Cu, Zn, Fe) ve Temel Antioksidant Enzim Düzeylerinin Mevsimsel Değişimi. Master thesis, Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü.Google Scholar
  2. Amiard, J.-C., Amiard-Triquet, C., Barka, S., Pellerin, J., & Rainbow, P. S. (2006). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76, 160–202.Google Scholar
  3. Atanassova, I., & Mills, G. (2016). Biogenic and anthropogenic lipid markers in sediments from a marsh habitat associated with the LCP chemicals superfund site in Brunswick, Georgia, USA. Water, Air, & Soil Pollution, 227(1), 40.Google Scholar
  4. Ateş, A. S., Katağan, T., Sezgin, M., Özdilek, H. G., Berber, S., & Bulut, M. (2014). The effects of some domestic pollutants on the cumacean (Crustacea) community structure at the coastal waters of the Dardanelles, Turkey. Arthropods, 3(1), 27–42.Google Scholar
  5. Atwell, L., Hobson, K. A., & Welch, H. E. (1998). Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55(5), 1114–1121.Google Scholar
  6. Banni, M., Negri, A., Dagnino, A., Jebali, J., Ameur, S., & Boussetta, H. (2010). Acute effects of benzo[a]pyrene on hepatopancreas enzymatic biomarkers and DNA damage on mussel Mytilus galloprovincialis. Ecotoxicology and Environmental Safety, 73, 842–848.Google Scholar
  7. Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A., & MacLeod, H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology, 73(5), 1007–1012.Google Scholar
  8. Bebianno, M. J., Cravo, A., Miguel, C., & Morais, S. (2003). Metallothionein concentrations in a population of Patella aspera: variation with size. The Science of the Total Environment, 301, 151–161.Google Scholar
  9. Bodin, N., Le Loc’h, F., & Hily, C. (2007). Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. Journal of Experimental Marine Biology and Ecology, 341, 168–175.Google Scholar
  10. Box, A., Sureda, A., Galgani, F., Pons, A., & Deudero, S. (2007). Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(4), 531–539.Google Scholar
  11. Buico, A., Cassino, C., Dondero, F., Vergani, L., & Osella, D. (2008). Radical scavenging abilities of fish MT-A and mussel MT-10 metallothionein isoforms: an ESR study. Journal of Inorganic Biochemistry, 102(4), 921–927.Google Scholar
  12. Cabanellas-Reboredo, M., Deudero, S., & Blanco, A. (2009). Stable-isotope signatures (δ13C and δ15N) of different tissues of Pinna nobilis Linnaeus, 1758 (Bivalvia): isotopic variations among tissues and between seasons. Journal of Molluscan Studies, 75(4), 343–349.Google Scholar
  13. Çayır, A., Coşkun, M., & Coşkun, M. (2012). Evaluation of metal concentrations in mussel M. galloprovincialis in the Dardanelles Strait, Turkey in regard of safe human consumption. Bulletin of Environmental Contamination and Toxicology, 89(1), 91–95.Google Scholar
  14. Cravo, A., Lopes, B., Serafim, A., Company, R., Barreira, L., Gomes, T., & ve Bebianno, M. J. (2013). Spatial and seasonal biomarker responses in the clam Ruditapes decussatus. Biomarkers, 18(1), 30–43.Google Scholar
  15. DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42(5), 495–506.Google Scholar
  16. Deudero, S., Cabanellas, M., Blanco, A., & Tejada, S. (2009). Stable isotope fractionation in the digestive gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology, 368(2), 181–188.Google Scholar
  17. Endo, T., Kimura, O., Ogasawara, H., Ohta, C., Koga, N., Kato, Y., & Haraguchi, K. (2015). Mercury, cadmium, zinc and copper concentrations and stable isotope ratios of carbon and nitrogen in tiger sharks (Galeocerdo cuvier) culled off Ishigaki Island, Japan. Ecological Indicators, 55, 86–93.Google Scholar
  18. Fernandez, B., Campillo, J. A., Martinez-Gomez, C., & Benedicto, J. (2012). Assessment of the mechanisms of detoxification of chemical compounds and antioxidant enzymes in the hepatopancreas of mussels, Mytilus galloprovincialis, from Mediterranean Coastal Sites. Chemosphere, 87, 1235–1245.Google Scholar
  19. Fisk, A. T., Tittlemier, S. A., Pranschke, J. L., & Norstrom, R. J. (2002). Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland sharks. Ecology, 83(8), 2162–2172.Google Scholar
  20. Flöhe, L., & Ötting, F. (1984). Superoxide dismutase assays. Methods of Enzymology, 105, 93–104.Google Scholar
  21. Güereña, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., & Riha, S. (2013). Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant and Soil, 365(1–2), 239–254.Google Scholar
  22. Guiloski, I. C., Ribas, J. L. C., da Silva Pereira, L., Neves, A. P. P., & de Assis, H. C. S. (2015). Effects of trophic exposure to dexamethasone and diclofenac in freshwater fish. Ecotoxicology and Environmental Safety, 114, 204–211.Google Scholar
  23. Hobson, K. A. (1995). Reconstructing avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. Condor, 97, 752–762.Google Scholar
  24. Jarman, W. M., Hobson, K. A., Sydeman, W. J., Bacon, C. E., & McLaren, E. B. (1996). Influence of trophic position and feeding location on contaminant levels in the Gulf of the Farallones food web revealed by stable isotope analysis. Environmental Science & Technology, 30(2), 654–660.Google Scholar
  25. Jung, K., Förstel, H., Schlee, D., Tintemann, H., Faust, H. & Schfifirmann, G. (1993). The nitrogen metabolism of the pine needle (Pinus sylvestris L.) as bioindication system of environmental contaminations. 22nd Meeting of the FEBS, Book of Abstracts, Stockholm, pp. 81.Google Scholar
  26. Kidd, K. A., Schindler, D. W., Hesslein, R. H., & Muir, D. C. G. (1995). Correlation between stable nitrogen isotope ratios and concentrations of organochlorines in biota from a freshwater food web. Science of the Total Environment, 160, 381–390.Google Scholar
  27. Kidd, K. A., Hesslein, R. H., Ross, B. J., Koczanski, K., Stephens, G. R., & Muir, D. C. (1998). Bioaccumulation of organochlorines through a remote freshwater food web in the Canadian Arctic. Environmental Pollution, 102(1), 91–103.Google Scholar
  28. Kidd, K. A., Bootsma, H. A., Hesslein, R. H., Muir, D. C. G., & Hecky, R. E. (2001). Biomagnification of DDT through the benthic and pelagic food webs of Lake Malawi, East Africa: importance of trophic level and carbon source. Environmental Science & Technology, 35, 14–20.Google Scholar
  29. Kidd, K. A., Bootsma, H. A., Hesslein, R. H., Lockhart, W. L., & Hecky, R. E. (2003). Mercury concentrations in the food web of Lake Malawi, East Africa. Journal of Great Lakes Research, 29, 258–266.Google Scholar
  30. Kiljunen, M., Grey, J., Sinisalo, T., Harrod, C., Immonen, H., & Jones, R. I. (2006). A revised model for lipid normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology, 43, 1213–1222.Google Scholar
  31. Kiriluk, R. M., Servos, M. R., Whittle, D. M., Cabana, G., & Rasmussen, J. B. (1995). Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web. Canadian Journal of Fisheries and Aquatic Sciences, 52(12), 2660–2674.Google Scholar
  32. Kucklick, J. R., & Baker, J. E. (1998). Organochlorines in Lake Superior’s food web. Environmental Science & Technology, 32(9), 1192–1198.Google Scholar
  33. Lima, I., Moreira, S. M., Rendon-Von Osten, J., Soares, A. M., & Guilhermino, L. (2007). Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-western coast of Portugal. Chemosphere, 66(7), 1230–1242.Google Scholar
  34. Manduzio, H., Monsinjon, T., Rocher, B., Leboulenger, F., & Galap, C. (2003). Characterization of an inducible isoform of the Cu/Zn superoxide dismutase in the blue mussel Mytilus edulis. Aquatic Toxicology, 64(1), 73–83.Google Scholar
  35. Michener, R. H., & Schell, D. M. (1994). Stable isotope ratios as tracers in marine aquatic food webs. In K. Lajtha & R. H. Michener (Eds.), Stable isotopes in ecology and environmental science (pp. 38–157). UK: Blackwell Scientific Publications.Google Scholar
  36. Michener, R. H., Kaufman, L., Michener, R., & Lajtha, K. (2007). Stable isotope ratios as tracers in marine food webs: an update. Stable Isotopes in Ecology and Environmental Science, 2, 238–282.Google Scholar
  37. Newsome, S. D., Etnier, M. A., Gifford-Gonzalez, D., Phillips, D. L., van Tuinen, M., Hadly, E. A., & Koch, P. L. (2007). The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proceedings of the National Academy of Sciences, 104(23), 9709–9714.Google Scholar
  38. Oczkowski, A., Markham, E., Hanson, A., & Wigand, C. (2014). Carbon stable isotopes as indicators of coastal eutrophication. Ecological Applications, 24(3), 457–466.Google Scholar
  39. Orbea, A., Ortiz-Zarragoitia, M., Sole, M., Porte, C., & Cajaraville, M. P. (2002). Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve mollucs, crabs and fish form the Urdaibai and Plentzia Estuaries (Bay of Biscay). Aquatic Toxicology, 58, 75–98.Google Scholar
  40. Otitoju, O., & Onwurah, I. N. E. (2007). Glutathione S-transferase (GST) activity as a biomarker in ecological risk assessment of pesticide contaminated environment. African Journal of Biotechnology, 6(12), 1455–1459.Google Scholar
  41. Otitoju, O., & Onwurah, I. N. E. (2011). Biomarkers of pesticide-contaminated environment. In M. Stoytcheva (Ed.), Pesticides in the modern world-pests control and pesticides exposure and toxicity assesment (pp. 241–252). Rijeka: InTech.Google Scholar
  42. Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One, 5, e9672.Google Scholar
  43. Perrichon, P., Akcha, F., Le Menach, K., Goubeau, M., Budzinski, H., Cousin, X., & Bustamante, P. (2015). Parental trophic exposure to three aromatic fractions of polycyclic aromatic hydrocarbons in the zebrafish: consequences for the offspring. Science of the Total Environment, 524, 52–62.Google Scholar
  44. Post, D. M., Layman, C. A., Arrington, D. A., Takimoto, G., Quattrochi, J., & Montaña, C. G. (2006). Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152, 179–189.Google Scholar
  45. Qiu, X., Brown, K., Hirschey, M. D., Verdin, E., & Chen, D. (2010). Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabolism, 12(6), 662–667.Google Scholar
  46. Regoli, F., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S., & Winston, G. W. (2002). Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Marine Environmental Research, 54(3), 419–423.Google Scholar
  47. Regoli, F., Giuliani, M. E., Benedetti, M., & Arukwe, A. (2011). Molecular and biochemical biomarkers in environmental monitoring: a comparison of biotransformation and antioxidant defense systems in multiple tissues. Aquatic Toxicology, 105(3), 56–66.Google Scholar
  48. Richardson, B. J., De Luca-Abbott, S. B., McClellan, K. E., Zheng, G. J., Martin, M., & Lam, P. K. S. (2005). Field validation of antioxidant enzyme biomarkers in mussels (Perna viridis) and clams (Ruditapes philippinarum) transplanted in Hong Kong Coastal Waters. Marine Pollution Bulletin, 51, 694–707.Google Scholar
  49. Rumolo, P., Barra, M., Gherardi, S., Marsella, E., & Sprovieri, M. (2011). Stable isotopes and C/N ratios in marine sediments as a tool for discriminating anthropogenic impact. Journal of Environmental Monitoring, 13(12), 3399–3408.Google Scholar
  50. Saicic, Z. S., Borkovic, S. S., Saponjic, J. S., Pavlovic, S. Z., Blagojevic, D. P., Milosevic, S. M., Kovacevic, T. B., Radojicic, R. M., Spasic, M. B., & Zikic, R. V. (2005). The activity of antioxidant defence enzymes in the mussel Mytilus galloprovincialis from the Adriatic Sea. Comparative Biochemistry and Physiology, 141, 366–374.Google Scholar
  51. Santovito, G., Piccinni, E., Cassini, A., Irato, P., & Albergoni, V. (2005). Antioxidant responses of the Mediterranean mussel, Mytilus galloprovincialis, to environmental variability of dissolved oxygen. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 140(3), 321–329.Google Scholar
  52. Sará, G., Scilipoti, D., Mazzola, A., & Modica, A. (2003). Effects of fish farming waste to sedimentary and particulate organic matter in a southern Mediterranean area (Gulf of Castellammare, Sicily): a multiple stable isotope study (δ13C and δ15N). Aquaculture, 234, 199–213.Google Scholar
  53. Solé, M., Kopecka-Pilarczyk, J., & Blasco, J. (2009). Pollution biomarkers in two estuarine invertebrates, Nereis diversicolor and Scrobicularia plana, from a Marsh Ecosystem in SW Spain. Environmental International, 35, 523–531.Google Scholar
  54. Stenroth, P., Holmqvist, N., Nyström, P., Berglund, O., Larsson, P., & Granéli, W. (2006). Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment, and season. Canadian Journal of Fisheries and Aquatic Sciences, 63(4), 821–831.Google Scholar
  55. Tittlemier, S. A., Fisk, A. T., Hobson, K. A., & Norstrom, R. J. (2002). Examination of the bioaccumulation of halogenated dimethyl bipyrroles in an Arctic marine food web using stable nitrogen isotope analysis. Environmental Pollution, 116(1), 85–93.Google Scholar
  56. Tkachenko, H., Kurhaluk, N., Grudniewska, J., & Andriichuk, A. (2014). Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis. Fish Physiology and Biochemistry, 40(4), 1289–1300.Google Scholar
  57. Ungvari, Z., Ridgway, I., Philipp, E. E., Campbell, C. M., McQuary, P., Chow, T., Coleho, M., Didier, E. S., Gelino, S., Holmbeck, M. A., Kim, I., Levy, E., Sosnowska, D., Sonntag, W. E., Austad, S. N., & Csiszar, A. (2011). Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66(7), 741–750.Google Scholar
  58. Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178–189.Google Scholar
  59. Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. J. (2007). Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Miytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Marine Pollution Bulletin, 54, 1361–1371.Google Scholar
  60. Van Dover, C. L., Grassle, J. F., Fry, B., Garritt, R. H., & Starczak, V. R. (1992). Stable isotope evidence for entry of sewage-derived organic material into a deep-sea food web. Nature, 360(6400), 153–156.Google Scholar
  61. Vernouillet, G., Eullaffroy, P., Lajeunesse, A., Blaise, C., Gagné, F., & Juneau, P. (2010). Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere, 80(9), 1062–1068.Google Scholar
  62. Vlahogianni, T., Dassenakis, M., Scoullos, M. J., & Valavanidis, A. (2007). Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Marine Pollution Bulletin, 54(9), 1361–1371.Google Scholar
  63. Xie, Q., Lu, S., Evans, D., Dillon, P., & Hintelmann, H. (2005). High precision Hg isotope analysis of environmental samples using gold trap-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 20(6), 515–522.Google Scholar
  64. Yılmaz, S., & Sadikoglu, M. (2011). Study of heavy metal pollution in seawater of Kepez harbor of Canakkale (Turkey). Environmental Monitoring and Assessment, 173(1), 899–904.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science and Arts, Department of BiologyÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations