Hindcasting eutrophication and changes in temperature and storage volume in a semi-arid reservoir: a multi-decadal Landsat-based assessment

  • Eliza S. Deutsch
  • Ibrahim AlameddineEmail author


In situ monitoring of freshwater systems is often constrained by cost and accessibility, particularly in developing countries and in remote areas. Satellite remote sensing is therefore increasingly being integrated with existing in situ water quality monitoring programs. In this study, we use the Landsat TM/ETM+ image record collected between 1984 and 2015 to track temporal changes in trophic status, chlorophyll-a levels, algal bloom incidences, water clarity, water temperature, and reservoir water volume in a poorly monitored hypereutrophic semi-arid reservoir. Historical reservoir water quality data are inferred from calibrated Landsat-based empirical algorithms. The results show that, although the reservoir has existed in a eutrophic to hypereutrophic state over the past 30 years, its water quality has significantly deteriorated in the most recent decade. Mean summer chlorophyll-a concentrations were found to have increased by around 163% between 1984 and 2015, while water clarity dropped by more than 58% over the same period. Statistically significant changes in surface water temperatures were also apparent for the month of August, with a cumulative increase of 1.24 °C over the 31-year study period. The rise in temperature appears to correlate with the incidence of Microcystis blooms observed in the reservoir over the past decade. On the other hand, the water volume in the reservoir was found to have been fairly stable over time, likely as a result of adaptive reservoir management. This study demonstrates the strength of using Landsat data to hindcast and quantify changes in water quality and quantity in poorly monitored freshwater systems.


Remote sensing Qaraoun Reservoir Landsat Chlorophyll-a Secchi disk depth Eutrophication 


Funding information

This study was generously supported through the United States Agency for International Development through the USAID-NSF PEER initiative (grant no. AID-OAA-A-I1-00012) in conjunction with support from the US National Science Foundation under (NSF) (grant no. CBET-1058027); the American University of Beirut University Research Board (grant no. 103008); and the National Sciences and Engineering Research Council of Canada (NSERC) PGS-D Scholarship Program.

Supplementary material

10661_2018_7180_MOESM1_ESM.docx (47 kb)
ESM 1 (DOCX 47 kb)


  1. Allan, M. G., Hamilton, D. P., Hicks, B., & Brabyn, L. (2015). Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environmental Monitoring and Assessment, 187, 364–386.Google Scholar
  2. APHA, WEF, & AWWA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  3. Assaf, H., & Saadeh, M. (2008). Assessing water quality management options in the upper Litani Basin, Lebanon, using an integrated GIS-based decision support system. Environmental Modelling & Software, 23(10–11), 1327–1337.Google Scholar
  4. Atoui, A., Hafez, H., & Slim, K. (2013). Occurrence of toxic cyanobacterial blooms for the first time in Lake Karaoun, Lebanon. Water Environment Journal, 27(1), 42–49.Google Scholar
  5. BAMAS (2005). Litani water quality management project: technical survey report. Beirut, Lebanon: Litani Basin Management Advisory Services, USAID.Google Scholar
  6. Barsi, J. A., Barker, J. L., & Schott, J. R. 2003 An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International, (Vol. 5, pp. 3014–3016): IEEE.Google Scholar
  7. Barsi, J. A., Schott, J. R., Palluconi, F. D., & Hook, S. J. (2005). Validation of a web-based atmospheric correction tool for single thermal band instruments. In Earth Observing Systems X, (Vol. 5882, pp. 58820E). International Society for Optics and Photonics.Google Scholar
  8. Baughman, C. A., Jones, B. M., Bartz, K. K., Young, D. B., & Zimmerman, C. E. (2015). Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ Surface Reflectance Climate Data Record archive, Lake Clark, Alaska. Remote Sensing, 7, 13692–13710.Google Scholar
  9. Boyd, J. (2000). The new face of the Clean Water Act: a critical review of the EPA’s proposed TMDL rules. (pp. 37). Washington, D.C.Google Scholar
  10. Brezonik, P., Menken, K. D., & Bauer, M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management, 21(4), 373–382.Google Scholar
  11. Brivio, P. A., Giardino, C., & Zilioli, E. (2001). Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. International Journal of Remote Sensing, 22, 487–502.Google Scholar
  12. Burger, D. F., Hamilton, D. P., & Pilditch, C. A. (2008). Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecological Modelling, 211, 411–423.Google Scholar
  13. Burns, N. M., Rockwell, D. C., Bertram, P. E., Dolan, D. M., & Ciborowski, J. J. H. (2005). Trends in temperature, secchi depth, and dissolved oxygen deplation rates in the central basin of Lake Erie, 1983-2002. Journal of Great Lakes Research, 31, 35–49.Google Scholar
  14. Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P., & Brookes, J. D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 46(5), 1394–1407.Google Scholar
  15. Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22, 361–369.Google Scholar
  16. Carlson, R. E., & Simpson, J. (1996). A coordinator’s guide to volunteer lake monitoring methods. Madison: North American Lake Management Society.Google Scholar
  17. Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.Google Scholar
  18. Chung, S. W., Imberger, J., Hipsey, M. R., & Lee, H. S. (2014). The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir. Ecological Modelling, 289, 133–149.Google Scholar
  19. Cohen, W. B., & Goward, S. N. (2004). Landsat’s role in ecological applications of remote sensing. BioScience, 54(6), 535–545.Google Scholar
  20. Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M. C., Nino, F., Abarca del Rio, R., Cazenave, A., & Maisongrande, P. (2011). SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data. Advances in Space Research, 47(9), 1497–1507.Google Scholar
  21. Davis, T. W., Berry, D. L., Boyer, G. L., & Gobler, C. J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725.Google Scholar
  22. Dekker, A. G., & Peters, S. W. M. (1993). Use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799–821.Google Scholar
  23. Deutsch, E. S., Alameddine, I., & El-Fadel, M. (2018). Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms? Environmental Monitoring and Assessment, 190(3), 141.Google Scholar
  24. Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M. H., Femenias, P., Frerick, J., et al. (2012). The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sensing of Environment, 120, 37–57.Google Scholar
  25. Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental Monitoring and Assessment, 129(1–3), 295–308.Google Scholar
  26. El-Fadel, M., Maroun, R., Bsat, R., & Makki, M. (2003). Water quality assessment of the Upper Litani River Basin and Lake Qaraoun, Lebanon. Bethesda: Development Alternatives, Inc..Google Scholar
  27. El-Fadel, M., & Zeinati, M. (2000). Water resources management in Lebanon: characterization, water balance and policy options. Water Resources Development, 16, 615–638.Google Scholar
  28. ESRI. (2015). ArcGIS desktop: release 10.5 (10.5.2 ed.). Redlands: Environmental Systems Research Institute.Google Scholar
  29. Fadel, A., Atoui, A., Lemaire, B. J., Vinçon-leite, B., & Slim, K. (2015). Environmental factors associated with phytoplankton succession in a Mediterranean reservoir with a highly fluctuating water level. Environmental Monitoring and Assessment, 187(10), 633–633.Google Scholar
  30. Fadel, A., Lemaire, B. J., Atoui, A., Vinc, B., Amacha, N., Slim, K., et al. (2014). First assessment of the ecological status of Karaoun reservoir, Lebanon. Lakes & Reservoirs: Research and Management, 19, 142–157.Google Scholar
  31. Franz, B. A., Werdell, P. J., Meister, G., Kwiatkowska, E. J., Bailey, S. W., Ahmad, Z., McClain, C. R. (2006) MODIS land bands for ocean remote sensing applications. In Proc. Ocean Optics XVIII, Montreal, Canada, (Vol. 10, pp. 9–13).Google Scholar
  32. Frazier, P. S., & Page, K. J. (2000). Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(12), 1461–1467.Google Scholar
  33. Giardino, C., Brando, V. E., Dekker, A. G., Strömbeck, N., & Candiani, G. (2007). Assessment of water quality in Lake Garda (Italy) using Hyperion. Remote Sensing of Environment, 109(2), 183–195. Scholar
  34. Gitelson, A., Szilagyi, F., & Mittenzwey, K. H. (1993). Improving quantitative remote sensing for monitoring of inland water quality. Water Research, 27(7), 1185–1194.Google Scholar
  35. Gitelson, A. A, & Yacobi, Y. Z. (1995) Reflectance in the red and near infra-red ranges of the spectrum as tool for remote chlorophyll estimation in inland waters-Lake Kinneret case study. In Proc. Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel. (pp. 5.2.6/1–5.2.6/5).
  36. Goslee, S. C. (2011). Analyzing remote sensing data in R: THE Landsat package. Journal of Statistical Software, 43, 1–25.Google Scholar
  37. Han, L., Rundquist, D., Liu, L., Fraser, R., & Schalles, J. (1994). The spectral responses of algal chlorophyll in water with varying levels of suspended sediment. International Journal of Remote Sensing, 15(18), 3707–3718.Google Scholar
  38. Hansen, C. H., Dennison, P., Burian, S., Barber, M., & Williams, G. (2016) Hindcasting water quality in an optically complex system. WIT Transactions on Ecology and the Environment, 209(2016), 35-44.Google Scholar
  39. Hicks, B. J., Stichbury, G. A., Brabyn, L. K., Allan, M. G., & Ashraf, S. (2013). Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environmental Monitoring and Assessment, 185(9), 7245–7261.Google Scholar
  40. Hijmans, R. J., & van Etten, J. (2014). Raster: geographic data analysis and modeling. R packages (R package version 3.0–12 ed., Vol. 517).
  41. Ho, J. C., Stumpf, R. P., Bridgeman, T. B., & Michalak, A. M. (2017). Using Landsat to extend the historical record of lacutrine phytoplankton blooms: a Lake Erie case study. Remote Sensing of Environment, 191, 273–285.Google Scholar
  42. Jiménez-Muñoz, J. C., Cristóbal, J., Sobrino, J. A., Sòria, G., Ninyerola, M., & Pons, X. (2009). Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 339–349.Google Scholar
  43. Jiménez-Muñoz, J. C., & Sobrino, J. A. (2010). A single-channel algorithm for land-surface temperature retrieval from ASTER data. IEEE Geoscience and Remote Sensing Letters, 7(1), 176–179.Google Scholar
  44. Jiménez-Muñoz, J. C., & Sobrino, J. A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 108, 4688.,D22.
  45. Jurdi, M. E. Y., Korfali, S. I., Karahagopian, Y., & Davies, B. E. (2002). Evaluation of water quality of the Qaraaoun Reservoir, Lebanon: suitability for multipurpose usage. Environmental Monitoring and Assessment, 77, 11–30.Google Scholar
  46. Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002a). Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 36(17), 4330–4340.Google Scholar
  47. Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002b). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82(1), 38–47.Google Scholar
  48. Korfali, S. I., Jurdi, M., & Davies, B. E. (2006). Variation of metals in bed sediments of Qaraaoun Reservoir, Lebanon. Environmental Monitoring and Assessment, 115(1–3), 307–319.Google Scholar
  49. Korfali, S. I., & Jurdi, M. S. (2011). Speciation of metals in bed sediments and water of Qaraaoun reservoir, Lebanon. Environmental Monitoring and Assessment, 178(1–4), 563–579.Google Scholar
  50. Kosten, S., Huszar, V. L. M., Becares, E., Costa, L. S., van Donk, E., Hansson, L. A., et al. (2012). Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 18(1), 118–126.Google Scholar
  51. Lamaro, A. A., Marinelarena, A., Torrusio, S. E., & Sala, S. E. (2013). Water surface temperature estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: case study of Embalse del Río Tercero (Córdoba, Argentina). Advances in Space Research, 51(3), 492–500.Google Scholar
  52. Lee, Z. P. (2006) Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. International Ocean Colour Coordinating Group (IOCCG), .Google Scholar
  53. Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to probability and statistics: essays in honor of harold hotelling (pp. 278-292). Palo Alto: Stanford University Press.Google Scholar
  54. Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131, 14–37.Google Scholar
  55. Markham, B. L., & Helder, D. L. (2012). Forty-year calibrated record of earth-reflected radiance from Landsat : a review. Remote Sensing of Environment, 122, 30–40.Google Scholar
  56. Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Gao, F., Kutler, J., & Lim, T. K. (2006). A Landsat surface reflectance dataset for North American, 1990-2000. IEEE Geoscience and Remote Sensing Letters, 3(1), 68–72.Google Scholar
  57. Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855–6899. Scholar
  58. Mayo, M., Gitelson, A., Yacobi, Y. Z., & Ben-Avraham, Z. (1995). Chlorophyll distribution in Lake Kinneret determined from Landsat Thematic Mapper Data. International Journal of Remote Sensing, 16(1), 175–182.Google Scholar
  59. McCullough, I. M., Loftin, C. S., & Sader, S. A. (2012). Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sensing of Environment, 123, 109–115.Google Scholar
  60. McCullough, I. M., Loftin, C. S., & Sader, S. A. (2013). Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery. Lake and Reservoir Management, 29(2), 89–98.Google Scholar
  61. Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., Chaffin, J. D., Cho, K., Confesor, R., Daloglu, I., DePinto, J. V., Evans, M. A., Fahnenstiel, G. L., He, L., Ho, J. C., Jenkins, L., Johengen, T. H., Kuo, K. C., LaPorte, E., Liu, X., McWilliams, M. R., Moore, M. R., Posselt, D. J., Richards, R. P., Scavia, D., Steiner, A. L., Verhamme, E., Wright, D. M., & Zagorski, M. A. (2013). Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. PNAS, 110(16), 6448–6452.Google Scholar
  62. Ministry of Environment Lebanon. (2010). State and trends of the Lebanese environment (pp. 355–355). Lebanon: Beirut.Google Scholar
  63. Ministry of Environment Lebanon. (2011). Lebanon’s second national communication to the UNFCCC. Lebanon: Beirut.Google Scholar
  64. Najem, W. (2007) Le Liban face au changement climatique- réponse du Centre de Recherche de l’Eau de l’ESIB. L’Orient le Jour.Google Scholar
  65. O'Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334.Google Scholar
  66. Odermatt, D., Gitelson, A., Brando, V. E., & Schaepman, M. (2012). Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sensing of Environment, 118, 116–126.Google Scholar
  67. Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112(11), 4086–4097.Google Scholar
  68. Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2011). Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resources Research, 47(9), W09515.Google Scholar
  69. O’Reilly, J.E., Maritorena, S., Siegel, D.A., O’Brien, M.C., Toole, D., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P., Cota, G., Hooker, S.B., McClain, C.R., Carder, K.L., Muller-Karger, F., Harding, L., Magnuson, A., Phinney, D., Moore, G.F., Aiken, J., Arrigo, K.R., Letelier, R., Culver, M. (2001). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. (Vol. 11). Greenbelt, Maryland.Google Scholar
  70. Reilly, J. E., Stephane M. B,. Greg, M., David A. S., Kendall, L. C., Sara A. G., Mati K., & Charles M. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(11), 24937–24953.Google Scholar
  71. Ott, W. R. (1995). Environmental statistics and data analysis. Boca Raton: Lewis Publishers.Google Scholar
  72. Paerl, H. W., & Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1, 27–37.Google Scholar
  73. Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 65(4), 995–1010.Google Scholar
  74. Paerl, H. W., & Ustach, J. F. (1982). Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnology and Oceanography, 27(2), 212–217.Google Scholar
  75. Pettersson, K. (1998). Mechanisms for internal loading of phosphorus in lakes. Hydrobiologia, 373, 21–25.Google Scholar
  76. Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H. W., & Carmichael, W. W. (2010). A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environmental Management, 45, 105–112.Google Scholar
  77. R Core Team. (2015). R: a language and environment for statistical computing. In R. D. C. Team (Ed.), R Foundation for statistical computing. R Foundation for Statistical Computing: Vienna, Austria.Google Scholar
  78. Robarts, R. D., & Zohary, T. (1987). Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research, 21(3), 391–399.Google Scholar
  79. Salama, M. S., Radwan, M., & van der Velde, R. (2012). A hydro-optical model for deriving water quality variables from satellite images (HydroSat): a case study of the Nile River demonstrating the future Sentinel-2 capabilities. Physics and Chemistry of the Earth, 50-52, 224–232. Scholar
  80. Schmidt, G. L., Jenkerson, C. B., Masek, J., Vermote, E., & Gao, F. (2013). Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description: U.S. Geological Survey Open-File Report 2013–1057, pp. 17.
  81. Schott, J. R., Hook, S., Barsi, J. A., Markham, B. L., Miller, J., Padula, F. P., et al. (2012). Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982-2010). Remote Sensing of Environment, 122, 41–49.Google Scholar
  82. Sene, K. J., Marsh, T. J., & Hachache, A. (1999). An assessment of the difficulties in quantifying the surface water resources of Lebanon. Hydrological Sciences Journal, 44(1), 79–96.Google Scholar
  83. Shaban, A. (2009). Indicators and aspects of hydrological drought in Lebanon. Water Resources Management, 23, 1875–1891.Google Scholar
  84. Shaban, A., & Nassif, N. (2007). Pollution in Qaraoun Lake, Central Lebanon. Journal of Environmental Hydrology, 15, 1–14.Google Scholar
  85. Simis, S. G. H., Peters, S. W. M., & Gons, H. J. (2005). Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology and Oceanography, 50(1), 237–245.Google Scholar
  86. Simon, R., Tormos, T., & Danis, P.-A. (2014). Retrieving water surface temperature from archive LANDSAT thermal infrared data: application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs. International Journal of Applied Earth Observation and Geoinformation, 30, 247–250.Google Scholar
  87. Slim, K., Atoui, A., Elzein, G., & Temsah, M. (2012). Effets des facteurs environnementaux sur la qualite de l'eau et la proliferation toxique des cyanobacteries du Lac Karaoun (Liban). Larhyss Journal, 10, 29–43.Google Scholar
  88. Slim, K., Fadel, A., Atoui, A., Lemaire, B. J., Vicon-Leite, B., & Tassin, B. (2014). Global warming as a driving factor for cyanobacterial blooms in Lake Karaoun, Lebanon. Desalination and Water Treatment, 52, 2094–2101.Google Scholar
  89. Sondergaard, M., Jensen, J. P., & Jeppensen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506, 135–145.Google Scholar
  90. Sudheer, K., Chaubey, I., & Garg, V. (2006). Lake water quality assessment from Landsat thematic mapper data using neural network: an approach to optimal band combination selection1. JAWRA Journal of the American Water Resources Association, 42(6), 1683–1695.Google Scholar
  91. Tebbs, E. J., Remedios, J. J., & Harper, D. M. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment, 135, 92–106.Google Scholar
  92. Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., & Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 ETM + and Landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment, 78(1-2), 39-54.Google Scholar
  93. Trenberth, K. E. (1983). What are the seasons? American Meteorological Society, 64(11), 1276–1282.Google Scholar
  94. Tukey, J. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.Google Scholar
  95. Tyler, A. N., Svab, E., Preston, T., Présing, M., & Kovács, W. A. (2006). Remote sensing of the water quality of shallow lakes: a mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. International Journal of Remote Sensing, 27(8), 1521–1537.Google Scholar
  96. Visser, P. M., Ibelings, B. W., Bormans, M., & Huisman, J. (2016). Artificial mixing to control cyanobacteria blooms: a review. Aquatic Ecology, 50, 423–441.Google Scholar
  97. Woodcock, C. E., Andserson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., et al. (2008). Free access to Landsat imagery. Science, 320(5879), 1011–1011.Google Scholar
  98. Wulder, M. a., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2–10.Google Scholar
  99. Xing, X. G., Zhao, D. Z., Liu, Y. G., Yang, J. H., Xiu, P., & Wang, L. (2007). An overview of remote sensing of chlorophyll fluorescence. Ocean Science Journal, 42(1), 49–59.Google Scholar
  100. Xu, H., Paerl, H. W., Qin, B., Zhu, G., Hall, N. S., & Wu, Y. (2015). Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environmental Science and Technology, 49(2), 1051–1059.Google Scholar
  101. Xu, Y., Cai, Q., Han, X., Shao, M., & Liu, R. (2010). Factors regulating trophic status in a large subtropical reservoir, China. Environmental Monitoring and Assessment, 169, 237–248.Google Scholar
  102. Yacobi, Y. Z., Gitelson, A., & Mayo, M. (1995). Remote sensing of chlorophyll in Lake Kinneret using highspectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. Journal of Plankton Research, 17(11), 2155–2173.Google Scholar
  103. Zabiegala, B., Kot-Wasik, A., Urbanowicz, M., & Namiesnik, J. (2010). Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Analytical and Bioanlytical Chemistry, 386(1), 273–296.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and ArchitectureAmerican University of BeirutBeirutLebanon

Personalised recommendations