Biomonitoring, physico-chemical, and biomarker evaluations of abattoir effluent discharges into the Ogun River from Kara Market, Ogun State, Nigeria, using Clarias gariepinus

  • Esther I. Olaniran
  • Temitope Olawunmi SogbanmuEmail author
  • Joseph K. Saliu


The discharge of untreated effluents into aquatic ecosystems poses potential adverse effects to aquatic organisms. In this study, the physico-chemical characteristics of abattoir effluent from Kara Cow Market, Ogun State, Nigeria, surface water and sediments from the Ogun River were evaluated. Fish species and macrobenthic fauna diversity in the river were also examined. Acute toxicity and biochemical and histological studies were investigated in Clarias gariepinus exposed to sub-lethal concentrations of the effluent over a period of 28 days. Effluent physico-chemical parameters such as ammonia, conductivity, total dissolved solids, and total suspended solids were higher than set limits. Total polycyclic aromatic hydrocarbons (PAHs) in the effluent and sediment were 6.73 mg/L and 8.07 mg/kg, respectively. Tetracycline (an antibiotic administered to the cows at the market) levels in the effluent and surface water were 0.23 μg/mL and 0.85 μg/mL, respectively. Fish species diversity was lower at the test site compared to the reference site. Chironomus spp. and Tubifex tubifex dominated the benthic assemblage at the test site. There were significant changes (p < 0.05) in the biochemical indices but no histological alterations in exposed C. gariepinus after 28 days. The results demonstrate that the effluent poses potential risks to the aquatic organisms and ecosystem services provided by the river. We recommend that environmental regulatory agencies and stakeholders should establish effluent and solid wastes management systems at the market to prevent environmental and public health epidemics within the framework of the United Nations Sustainable Development Goals 6 (clean water and sanitation) and 14 (life below water).

Graphical abstract


African sharptooth catfish Chronic toxicity Freshwater species diversity Priority and emerging pollutants Slaughterhouse wastewater Sustainable development goals 



The authors acknowledge Mr. Adenekan at the Biochemistry Department, University of Lagos, for the technical assistance with the biochemical studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This study followed the principles in the Declaration of Helsinki on the humane treatment of animals used in research ( and the principles in the AVMA Guidelines for the euthanasia of animals (AVMA 2013).

Supplementary material

10661_2018_7168_MOESM1_ESM.doc (206 kb)
ESM 1 (DOC 206 kb)


  1. Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.CrossRefGoogle Scholar
  2. Adelegan, J. A. (2002). Environmental policy and slaughterhouse waste in Nigeria. In: Proceedings of the 28th WEDC Conference Kolkata (Calcutta), India, vol 1. (pp. 3–6).Google Scholar
  3. Adeogun, A. O. (2012). Impact of industrial effluent on water quality and gill pathology of Clarias gariepinus from Alaro Stream, Ibadan, Nigeria. European Journal of Scientific Research, 76, 83–94.Google Scholar
  4. Adeogun, A. O., Ibor, O. R., & Chukwuka, A. V. (2013). Acute toxicity of abattoir and saw-mill effluents to juvenile-sized Clarias gariepinus. Zoology and Ecology, 23(1), 53–57.CrossRefGoogle Scholar
  5. Adeyemo, O. K. (2005). Haematological and histopathological effects of cassava mill effluent in Clarias gariepinus. African Journal of Biomedical Research, 8, 179–183.Google Scholar
  6. Ajagbe, F. E., Osibona, A. O., & Otitoloju, A. A. (2012). Diversity of the edible fishes of the Lagos lagoon, Nigeria and the public health concerns based on their lead (Pb) content. International Journal Fisheries Aquaculture, 2(3), 55–62.Google Scholar
  7. Alani, R., & Ukoakonam, F. (2014). Preliminary investigation of the state of pollution of Ogun River at Kara abattoir, near Berger, Lagos. International Journal of Environmental Science and Technology, 2, 11–23.Google Scholar
  8. Alimba, C. G., Ajayi, E. O., Hassan, T. O., Sowunmi, A. A. & Bakare, A. A. (2015). Cytogenotoxicity of abattoir effluent in Clarias gariepinus (Burchell, 1822) using micronucleus test. Chinese Journal of Biology. Article ID 624524, 6 pages.Google Scholar
  9. Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12, 465–478.CrossRefGoogle Scholar
  10. APHA/AWWA/WPCF. (2005). Standard methods for examination of water and wastewater (21th ed.p. 1). New York: APHA, AWWA, WPCR.Google Scholar
  11. Ates, B., Orun, I., Talas, Z. S., Durmaz, G., & Yilmaz, I. (2008). Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+. Fish Physiology and Biochemistry, 34, 53–59.CrossRefGoogle Scholar
  12. AVMA (American Veterinary Medical Association) (2013). AVMA guidelines for the euthanasia of animals, vol 70 (pp. 102).Google Scholar
  13. Ayoade, A. A., Sowunmi, A. A., & Nwachukwu, H. I. (2004). Gill asymmetry in Labeo ogunensis from Ogun River, Southwest Nigeria. Revista de Biologia Tropical, 52(1), 171–175.CrossRefGoogle Scholar
  14. Ayoola, S. O., & Kuton, M. P. (2009). Seasonal variation in fish abundance and physicochemical parameters of Lagos Lagoon. African Journal of Environmental Science and Technology, 3, 149–158.Google Scholar
  15. Balcazar, J. L., Subirats, J., & Borrego, C. M. (2015). The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in Microbiology, 6(1216), 1–9.Google Scholar
  16. Banjoo, D. R., & Nelson, P. K. (2005). Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments. Journal of Chromatography A, 1066(1–2), 9–18.CrossRefGoogle Scholar
  17. Bečić, E., Imamović, B., Dedić, M., & Šober, M. (2014). SPE extraction and TLC identification of tetracycline and fluoroquinolone in surface water. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 43, 35–40.Google Scholar
  18. Bi, Y., Wang, J., Pfister, G., Henkelmann, B., Zhu, K., & Schramm, K. W. (2009). Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semi permeable membrane devices (SPMD). Chemosphere, 75(11), 19–27.Google Scholar
  19. Borković, S. S., Šaponjić, J. S., Pavlović, S. Z., Blagojević, D. P., Milošević, S. M., Kovacevic, T. B., Radojicic, R. M., Spasic, M. B., Zikic, R. V., & Saicic, Z. S. (2005). The activity of antioxidant defence enzymes in the mussel Mytilus galloprovincialis from the Adriatic Sea. Comparative Biochemistry Physiology - Part C Toxicology Pharmacology, 141(4), 366–374.CrossRefGoogle Scholar
  20. Bougnom, B. P., Zongo, C., McNally, A., Ricci, V., Etoa, F. X., Thiele-Bruhn, S., & Piddock, L. J. V. (2019). Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. Environmental Research, 168, 14–24.CrossRefGoogle Scholar
  21. Brodin, T., Fick, J., Jonsson, M., & Klaminder, J. (2013). Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science, 339(6121), 814–815.CrossRefGoogle Scholar
  22. Carney Almroth, B. C. (2008). Oxidative damage in fish used as biomarkers in field and laboratory studies. PhD Thesis, Goteborg University, 74 pages.Google Scholar
  23. Carney Almroth, B., Albertsson, E., Sturve, J., & Forlin, L. (2008). Oxidative stress, evident in antioxidant defences and damage products in rainbow trout caged outside a sewage treatment plant. Ecotoxicology and Environmental Safety, 70(3), 370–378.CrossRefGoogle Scholar
  24. Çok, I., Mazmanci, B., Mazmanci, M. A., Turgut, C., Henkelmann, B., & Schramm, K. W. (2012). Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey. Environment International, 40, 63–69.CrossRefGoogle Scholar
  25. Daka, E. R., & Ugbomeh, A. P. (2013). Polycyclic aromatic hydrocarbons in sediment and tissues of the crab, Callinectes pallidus from the Azuabie Creek of the Upper Bonny Estuary in the Niger delta. Resource Journal of Applied Science, Engineering and Technology, 6, 2594–2600.Google Scholar
  26. De Graaf, G. & Janssen, H. (1996). Artificial reproduction and pond rearing of the African catfish Clarias gariepinus in Sub-Saharan Africa: A handbook. Food and Agriculture Organization of the United Nations.Google Scholar
  27. Diallo, A. A., Bibbal, D., Lo, F. T., Mbengue, M., Sarr, M. M., Diouf, M., Sambe, Y., Kerouredan, M., Alambedji, R., Thiongane, Y., Oswald, E., & Brugere, H. (2017). Prevalence of pathogenic and antibiotics resistant Escherichia coli from effluents of a slaughterhouse and a municipal wastewater treatment plant in Dakar. African Journal of Microbiology Research, 11(25), 1035–1042.CrossRefGoogle Scholar
  28. Ding, C., & He, J. (2010). Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology, 87(3), 925–941.CrossRefGoogle Scholar
  29. EGASPIN (Environmental Guidelines and Standards for the Petroleum Industry in Nigeria) (2002). Environment guidelines and standards for the petroleum industry in Nigeria (pp. 279).Google Scholar
  30. FAO (Food and Agriculture Organization) (2002). Ecosystem Issues. OAR/National Undersea Research Programme/ G.McFall
  31. FEPA (Federal Environmental Protection Agency) (1991). Interim effluent limitation guidelines in Nigeria for all categories or industries. Limit for discharge into surface water. In: Guidelines and standards for pollution control in Nigeria (pp. 287).Google Scholar
  32. Finney, D. J. (1971). Probit analysis. New York, 10022, 32.Google Scholar
  33. Grenni, P., Ancona, V., & Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25–39.CrossRefGoogle Scholar
  34. Habbu, P. V., Shastry, R. A., Mahadevan, K. M., Joshi, H., & Das, S. K. (2008). Hepatoprotective and antioxidant effects of Argyreia speciosa in rats. African Journal Traditional Complementary and Alternatives Medicine, 5(2), 158–164.Google Scholar
  35. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistical package for education and data analysis. Palaeontologia Electronica, 4, 9.Google Scholar
  36. Hawkes, H. A. (1998). Origin and development of the biological monitoring working party score system. Water Research, 32(3), 964–968.CrossRefGoogle Scholar
  37. Hernando, M., Mezcua, M., Fernández-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69, 334–342.CrossRefGoogle Scholar
  38. Karadag, H., Fırat, Ö., & Fırat, Ö. (2014). Use of oxidative stress biomarkers in Cyprinus carpio L. for the evaluation of water pollution in Ataturk Dam Lake (Adiyaman, Turkey). Bulletin of Environmental Contamination and Toxicology, 92(3), 289–293.CrossRefGoogle Scholar
  39. Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution, 163, 287–303.CrossRefGoogle Scholar
  40. Limbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018). Chronic exposure to low environmental concentrations an legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115, 205–219.CrossRefGoogle Scholar
  41. Lopez-Lopez, E., Sedeno-Diaz, J. E., Soto, C., & Favari, L. (2011). Responses of antioxidant enzymes, lipid peroxidation, and Na+/K+-ATPase in liver of the fish Goodea atripinnis exposed to Lake Yuriria water. Fish Physiology and Biochemistry, 37, 511–522.CrossRefGoogle Scholar
  42. Margalef, R. (1951). Diversity of species in natural communities. Publications of the Institute of Applied Biology, 6(1), 59–72.Google Scholar
  43. Maria, V. L., Ahmad, I., Oliveira, M., Serafimb, A., Bebianno, M. J., Pacheco, M., & Santos, M. A. (2009). Wild juvenile Dicentrarchus labrax L. liver antioxidant and damage responses at Aveiro Lagoon, Portugal. Ecotoxicology and Environmental Safety, 72, 1861–1870.CrossRefGoogle Scholar
  44. Mason, C. F. (2002). Biology of freshwater pollution. Pearson Education.Google Scholar
  45. Miller, G. W. (2017). The international reach of toxicology. Toxicology Science, 157, 274–275.CrossRefGoogle Scholar
  46. National Daily Newspaper 2016. Gridlock on Lagos-Ibadan expressway as plants overrun Ogun river by Admin June 19, 2016. Accessed 1 June 2018.
  47. NESREA (National Environmental Standards and Regulations Enforcement Agency) (2011a). Physico-chemical ambient water quality criteria for surface water. Effluent discharges, irrigation and reuse standards. In: National Environmental (surface and groundwater quality control) regulations (pp. B693–727).Google Scholar
  48. NESREA (National Environmental Standards and Regulations Enforcement Agency). (2011b). Physico-chemical ambient water quality criteria for surface water. Fisheries and recreation quality criteria standards. In: National Environmental (surface and groundwater quality control) regulations (pp. B693–727).Google Scholar
  49. NSPFS (National Special Programme for Food Security) (2005). Farming Nigeria’s water. A compilation of the newsletter of aquaculture and inland fisheries project. 1(21), 34.Google Scholar
  50. Nunes, B., Antunes, S. C., Gomes, R., Campos, J. C., Braga, M. R., Ramos, A. S., & Correia, A. T. (2015). Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: Antioxidant effects, neurotoxicity and histological alterations. Archives of Environmental Contamination and Toxicology, 68(2), 371–381.CrossRefGoogle Scholar
  51. OECD (Organization for Economic Cooperation and Development) (1992). Fish acute toxicity test. OECD guidelines for testing chemicals, adopted 17.07.1992, 203 (pp. 1–9).Google Scholar
  52. Ogbonna, D. N., & Ideriah, T. J. K. (2014). Effect of abattoir wastewater on the physico- chemical characteristics of soil and sediment in Southern Nigeria. Journal of Scientific Research and Reports, 3, 1612–1632.CrossRefGoogle Scholar
  53. Ognjanovic, B. I., Markovic, S. D., Pavlovic, S. Z., Zikic, R. V., Stajn, A. S., & Saicic, Z. S. (2008). Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: Protective effect of selenium. Physiological Research, 57(3), 403–411.Google Scholar
  54. Osibanjo, O., & Adie, G. U. (2007). Impact of effluent from Bodija abattoir on the physico-chemical parameters of Oshunkaye stream in Ibadan City, Nigeria. African Journal of Biotechnology, 6, 1806–1811.CrossRefGoogle Scholar
  55. Pandey, S., Parvez, S., Ansari, R. A., Ali, M., Kaur, M., Hayat, F., Ahmad, F., & Raisuddin, S. (2008). Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chemico-Biological Interactions, 174(3), 183–192.CrossRefGoogle Scholar
  56. Patra, A. K., Mushi, J. S. D., & Hughes, G. M. (1983). Oxygen consumption of the freshwater air-breathing Indian siluroid fish, Clarias batrachus (Linn.) in relation to body size and seasons. Proceedings of the Indian National Science Academy, 49, 566–574.Google Scholar
  57. Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93, 1268–1287.CrossRefGoogle Scholar
  58. Rommens, W., Maes, J., Dekeza, N., Inghelbrecht, P., Nhiwatiwa, T., Holsters, E., Ollevier, F., Marshall, B., & Brendonck, L. (2003). The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie, 158(3), 373–388.CrossRefGoogle Scholar
  59. Sainz, A., Grande, J. A., & de la Torre, M. L. (2004). Characterization of heavy metal discharge into the Ria of Huelva. Environment International, 30, 557–566.CrossRefGoogle Scholar
  60. Saliu, J. K., & Eruteya, O. J. (2006). Biodiversity of gutters in Lagos metropolis, Nigeria. Journal of Biological Sciences, 6, 936–940.CrossRefGoogle Scholar
  61. Saliu, J. K., Oluberu, S. A., Akpoke, I. I., & Ukwa, U. D. (2017). Cortisol stress response and histopathological alteration index in Clarias gariepinus exposed to sublethal concentrations of Qua Iboe crude oil and rig wash. African Journal of Aquatic Science, 42(1), 55–64.CrossRefGoogle Scholar
  62. Sengupta, S., Chattopadhyay, M. K., & Grossart, H.-P. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in Microbiology, 4(47), 1–13.Google Scholar
  63. Shannon, C. E. & Weiner, W. (1963). The mathematical theory of communication. Urban University Illinois Press (pp. 125).Google Scholar
  64. Sogbanmu, T. O., & Otitoloju, A. A. (2014). Joint action toxicity and biochemical effects of binary mixtures of forcados light crude oil and three dispersants against Clarias gariepinus. International Journal of Environmental Research, 8(2), 395–402.Google Scholar
  65. Sogbanmu, T. O., Nagy, E., Phillips, D. H., Arlt, V. M., Otitoloju, A. A., & Bury, N. R. (2016). Lagos lagoon sediment organic extracts and polycyclic aromatic hydrocarbons induce embryotoxic, teratogenic and genotoxic effects in Danio rerio (zebrafish) embryos. Environmental Science and Pollution Research, 23(14), 14489–14501.CrossRefGoogle Scholar
  66. Sogbanmu, T. O., Osibona, A. O., Oguntunde, A. O., & Otitoloju, A. A. (2018). Biomarkers of toxicity in Clarias gariepinus exposed to sublethal concentrations of polycyclic aromatic hydrocarbons. African Journal of Aquatic Science, 43, 281–292.CrossRefGoogle Scholar
  67. Sosanwo, A. A. (2016). Toxicological effects of effluents from Kara Cow Market, Ogun state on guppy fish (Poecilia reticulata). B. Sc thesis, University of Lagos, Nigeria.Google Scholar
  68. Tagliapietra, D., & Sigovini, M. (2010). Benthic fauna: Collection and identification of macrobenthic invertebrates. Terre et Environnement, 88, 253–261.Google Scholar
  69. Wang, Z., Fingas, N., & Sigouin, L. (2000). Characterization and source identification of unknown spilled oil using fingerprinting techniques by GC-MS and GC-FID. Liquid Chromatography Gas Chromatography, 18(10), 1058–1067.Google Scholar
  70. Wei, R., Ge, F., Huang, S., Chen, M., & Wang, R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82, 1408–1414.CrossRefGoogle Scholar
  71. Xu, W. H., Zhang, G., Zou, S. C., Li, X. D., & Liu, Y. C. (2007a). Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 145, 672–679.CrossRefGoogle Scholar
  72. Xu, W. H., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z., & Li, J. (2007b). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 41, 4526–4534.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ecotoxicology and Conservation Unit, Department of Zoology, Faculty of ScienceUniversity of LagosLagosNigeria

Personalised recommendations