Advertisement

Morphological response to salinity, temperature, and pH changes by marine fungus Epicoccum nigrum

  • Ramón Ahumada-Rudolph
  • Vanessa NovoaEmail author
  • José Becerra
Article

Abstract

Epicoccum nigrum (strain LQRA39-P) was isolated from sediments collected in Chilean Patagonian fjords using microscopy and molecular techniques. We analyzed adaptive responses of cell wall morphology to salinity, temperature, and pH in order to explain the ability of E. nigrum to co-inhabit both marine and freshwater environments. For this purpose, E. nigrum was cultured in a series of media with variations in salinity (freshwater and seawater), pH (acidic, neutral, and basic), and temperature (5 to 25 °C). Changes were observed through transmission electron microscopy. A direct correlation between increased salinity and cell wall thickening (> 0.2 μm) was observed, along with a significant relationship between pH and the presence of extracellular polymeric substances (EPS) on the outside of the cell wall. The observed morphological changes could confirm that an ubiquitous fungus such as E. nigrum requires adaptive responses to co-inhabit freshwater, marine, and terrestrial substrates.

Keywords

Fungal ecology Extremophile fungi Metabolism Extracellular polymeric substance (EPS) Cell wall 

Notes

Acknowledgments

The authors would like to express their gratitude to Mr. Estay and Mr. Alarcón of the transmission electron microscopy (TEM) laboratory and researchers Dr. Reinoso and Dr. Cajas for their contribution to the study of fungus.

Funding information

We are grateful for the financial support of Project Fondecyt 1151028 and CONICYT PIA/APOYO CCTE AFB170007. Dr. Ahumada-Rudolph expresses his gratitude to the post-doctoral program of the Directorate of Investigation, University of Bío-Bío.

References

  1. Abdel-Lateff, A., Fisch, K. M., Wright, A. D., & König, G. M. (2003). A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med, 69, 831–834.CrossRefGoogle Scholar
  2. Ahumada-Rudolph, R., Cajas-Madriaga, D., Rudolph, A., Reinoso, R., Torres, C., Silva, M., & Becerra, J. (2014). Variation of sterols and fatty acids as an adaptive response to changes in temperature, salinity and pH of a marine fungus Epicoccum nigrum isolated from the Patagonian fjords. Rev Biol Mar Oceanogr, 49, 293–305.CrossRefGoogle Scholar
  3. Ahumada-Rudolph, R., Novoa, V., Sáez, K., Martínez, M., Rudolph, A., Torres-Diaz, C., & Becerra, J. (2016a). Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline. Environ Monit Assess, 188, 468.  https://doi.org/10.1007/s10661-016-5475-0.CrossRefGoogle Scholar
  4. Ahumada-Rudolph, R., Novoa, V., Rudolph, A., Martínez, M., Torres-Díaz, C., & Becerra, J. (2016b). Hongos aislados desde sedimentos de fiordos chilenos degradadores de oxitetraciclina. Rev Biol Mar Oceanogr.  https://doi.org/10.4067/S0718-19572016000300010.
  5. Barone, G., Rastelli, E., Corinaldesi, C., Tangherlini, M., Danovaro, R., & Dell’Anno, A. (2018). Benthic deep-sea fungi in submarine canyons of the Mediterranean sea. Prog Oceanogr, 168, 57–64.CrossRefGoogle Scholar
  6. Bianchi, T. S., Xingqian, C., Blair, N. E., Burdige, D. J., Eglinton, T. I., & Galy, V. (2018). Centers of organic carbon burial and oxidation at the land-ocean interface. Org Geochem, 115, 138–155.CrossRefGoogle Scholar
  7. Bochdansky, A. B., Clouse, M. A., & Herndl, G. J. (2017). Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J, 11, 362–373.  https://doi.org/10.1038/ismej.2016.113.CrossRefGoogle Scholar
  8. Bouchez, T., Blieux, A. L., Dequiedt, S., Domaizon, I., Dufresne, A., Ferreira, S., Godon, J. J., Hellal, J., Joulian, C., Quaiser, A., Martin-Laurent, F., Mauffret, A., Monier, J. M., Peyret, P., Schmitt-Koplin, P., Sibourg, O., D’oiron, E., Bispo, A., Deportes, I., Grand, C., Cuny, P., Maron, P. A., & Ranjard, L. (2016). Molecular microbiology methods for environmental diagnosis. Environmental Chemistry Letters, 14(4), 423–441.CrossRefGoogle Scholar
  9. Bugni, T. S., & Ireland, C. M. (2004). Marine-derived fungi: a chemically and biologically diverse group of microorganisms. J Nat Prod, 21, 143–163.CrossRefGoogle Scholar
  10. Butin, H., & Peredo, H. L. (1986). Hongos parásitos en coníferas de América del Sur con especial referencia a Chile. Biblioteca mycologica. Concepción: J. Cramer..Google Scholar
  11. Danovaro, R., Corinaldesi, C., Dell’Anno, A., & Rastelli, E. (2017). Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fnx214.
  12. De Groot, P. W., Ram, A. F., & Klis, F. M. (2005). Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol, 42, 657–675.CrossRefGoogle Scholar
  13. Dighton, J. (2007). Nutrient cycling by saprotrophic fungi in terrestrial habitats. In C. P. Kubicek & I. S. Druzhinina (Eds.), The mycota IV, environmental and microbial relationships (second ed., pp. 287–300). Berlin: Springer.Google Scholar
  14. Drummond, A. J., Ashton, B., Burton, S., Cheung, S., Cooper, A., Heled, J., Moir, J., Stones-Havas, S., Sturrock, S., & Thierer, T. (2011). Geneious v6.0.3. Biomatters, Auckland. http://www.geneious.com/. Accessed 30 Mar 2011.
  15. Dzoyem, J. P., Melong, R., Tsamo, A. T., Maffo, T., Kapche, D., Ngadjui, B. T., McGaw, L. J., & Eloff, J. N. (2017). Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Braz J Pharmacogn, 27, 251–253.  https://doi.org/10.1016/j.bjp.2016.08.011.CrossRefGoogle Scholar
  16. Edgcomb, V. P., Beaudoin, D., Gast, R., Biddle, J. F., & Teske, A. (2011). Marine subsurface eukaryotes: the fungal majority. Environ Microbiol, 13, 172–183.CrossRefGoogle Scholar
  17. Edgcomb, V. P., Pachiadaki, M. G., Mara, P., Kormas, K. A., Leadbetter, E. R., & Bernhard, J. M. (2016). Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins. ISME J.  https://doi.org/10.1038/ismej.2016.58.
  18. Ernst, J. F., Pla, J. (2011). Signaling the glycoshield: Maintenance of the Candida albicans cell wall. International Journal of Medical Microbiology, 301(5), 378–383.CrossRefGoogle Scholar
  19. Fávaro, L. C., de Melo, F. L., Aguilar-Vildoso, C. I., & Araújo, W. L. (2011). Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One, 6, e14828.  https://doi.org/10.1371/journal.pone.0014828.CrossRefGoogle Scholar
  20. Fávaro, L. C., Sebastianes, F. L., & Araújo, W. L. (2012). Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One, 7(6), e36826.  https://doi.org/10.1371/journal.pone.0036826.CrossRefGoogle Scholar
  21. González-Martínez, S., Soria, I., Ayala, N., & Portillo-López, A. (2017). Culturable halotolerant fungal isolates from Southern California Gulf sediments. Open Agric.  https://doi.org/10.1515/opag-2017-0033.
  22. Gunde-Cimerman, N., Zalar, P., de Hoog, S., & Plemenitaš, A. (2000). Hypersaline waters in salterns: natural ecological niches for halophytic black yeasts. FEMS Microbiol Ecol, 32, 235–240.Google Scholar
  23. Gunde-Cimerman, N., Ramos, J., & Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycol Res, 113, 1231–1241.CrossRefGoogle Scholar
  24. Hai-Hong, S., Wen-Jun, M., Jie-Ying, J., Jia-Chao, X., Hong-Yan, L., Yin, C., Xiao-Hui, Q., Yan-Li, C., Jian, X., Chun-Qi, Z., Yu-Jiao, H., & Yu-Pin, Y. (2011). Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar Biotechnol, 13, 1048–1055.CrossRefGoogle Scholar
  25. Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol, 9, 177–191.CrossRefGoogle Scholar
  26. Hohmann, S. (2002). Osmotic adaptation in yeast: control of the yeast osmolyte system. Int Rev Cytol, 215, 149–187.CrossRefGoogle Scholar
  27. Hopke, A., Brown, A. J. P., Hall, R. A., & Wheeler, R. T. (2018). Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends in Microbiology, 26(4), 284–295.CrossRefGoogle Scholar
  28. Kelavakar, U., Rao, K. S., & Chhatpar, H. S. (1993). Sodium chloride stress induced morphological and ultrastructural changes in Aspergillus repens. Indian J Exp Biol, 31, 511–515.Google Scholar
  29. Kogej, T., Gorbushina, A. A., & Gunde-Cimerman, N. (2006). Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol Res, 110, 713–724.CrossRefGoogle Scholar
  30. Kogej, T., Stein, M., Volkmann, M., Gorbushina, A. A., Galinski, E. A., & Gunde-Cimerman, N. (2007). Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanisation. Microbiology, 153, 4261–4273.CrossRefGoogle Scholar
  31. Kralj-Kunčič, M., Kogej, T., Drobne, D., & Gunde-Cimerman, N. (2010). Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol, 76, 329–337.CrossRefGoogle Scholar
  32. Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G., & Vandenkoornhuyse, P. (2009). Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol, 75, 6415–6421.CrossRefGoogle Scholar
  33. León-Muñoz, J., Urbina, M. A., Garreaud, R., & Iriarte, J. L. (2018). Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci Rep, 8, 1330.  https://doi.org/10.1038/s41598-018-19461-4.CrossRefGoogle Scholar
  34. Lesage, G., & Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 70, 317–343.CrossRefGoogle Scholar
  35. Levin, D. E. (2011). Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics, 189(4), 1145–1175Google Scholar
  36. Li, W., Wang, M. M., Wang, X. G., Cheng, X. L., Guo, J. J., Bian, X. M., & Cai, L. (2016). Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Sci Rep.  https://doi.org/10.1038/srep26528.
  37. Libes, S. (2009). Introduction to marine biogeochemistry (2nd ed.). New York: Academic Press Elsevier.Google Scholar
  38. Manohar, C. S., & Raghukumar, C. (2013). Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett, 341, 69–78.CrossRefGoogle Scholar
  39. Masuma, R., Yamaguchi, Y., Noumi, M., Omura, S., & Namikoshi, M. (2001). Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 42, 455–459.CrossRefGoogle Scholar
  40. Nilsson, A., & Adler, L. (1990). Purification and characterisation of glycerol-3-phosphate dehydrogenase (NADþ) in the salt tolerant yeast Debaryomyces hansenii. Biochim Biophys Acta, 1034, 180–185.CrossRefGoogle Scholar
  41. Pachiadaki, M. G., Rédou, V., Beaudoin, D. J., Burgaud, G., & Edgcomb, V. P. (2016). Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury basin inferred from RNA-based analyses and microscopy. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.00846.
  42. Pernice, M. C., Giner, C. R., Logares, R., Perera-Bel, J., Acinas, S. G., Duarte, C. M., Gasol, J. M., & Massana, R. (2015). Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J, 10, 945–958.CrossRefGoogle Scholar
  43. Pernice, M. C., Giner, C. R., Logares, R., Perera-Bel, J., Acinas, S. G., Duarte, C. M., Gasol, J. M., & Massana, R. (2016). Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J, 10, 945–958.  https://doi.org/10.1038/ismej.2015.170.CrossRefGoogle Scholar
  44. Pessoni, R. A., Freshour, G., Figueiredo-Ribeiro, R. C., Hanh, M. G., & Braga, M. R. (2005). Cell-wall structure and composition of Penicilluim janczewskii as affected by inulin. Mycologia, 97, 304–311.CrossRefGoogle Scholar
  45. Picard, K. T. (2017). Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol, 25, 1–13.CrossRefGoogle Scholar
  46. Pitt, J., & Hocking, A. (2009). Fungi and food spoilage. In J. Pitt & Hocking (Eds.), Primary keys and miscellaneous fungi (3rd ed., pp. 88–89). London: Springer Dordrecht Heidelberg.Google Scholar
  47. Pusceddu, A., Dell’Anno, A., Fabiano, M., & Danovaro, R. (2009). Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar Ecol Prog Ser, 375, 41–52.  https://doi.org/10.3354/meps07735.CrossRefGoogle Scholar
  48. Pusz, W., Ogórek, R., Knapik, R., Kozak, B., & Bujak, H. (2015). The occurrence of fungi in the recently discovered Jarkowicka cave in the Karkonosze Mts. (Poland). Geomicrobiol J, 32, 59–67.CrossRefGoogle Scholar
  49. Richards, T. A., Jones, M. D., Leonard, G., & Bass, D. (2012). Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci, 4, 495–522.CrossRefGoogle Scholar
  50. Riquelme, M., Aguirre, J., Bartnicki-García, S., Braus, G. H., Feldbrügge, M., Fleig, U., Hansberg, W., Herrera-Estrella, A., Kämper, J., Kück, U., Mouriño-Pérez, R. R., Takeshita, N., & Fischer, R. (2018). Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev, 82, e00068–e00017.  https://doi.org/10.1128/MMBR.00068-17.CrossRefGoogle Scholar
  51. Rudolph, A., Medina, P., Urrutia, C., & Ahumada, R. (2009). Ecotoxicological sediment evaluations in marine aquaculture areas of Chile. Environ Monit Assess, 155, 419.  https://doi.org/10.1007/s10661-008-0444-x 429.CrossRefGoogle Scholar
  52. Schmid, F., Stone, B., Brownlee, R. T., McDougall, B. M., & Seviour, R. J. (2006). Structure and assembly of epiglucan, the extracellular (1→3;1→6)-β-glucan produced by the fungus Epicoccum nigrum strain F19. Carbohydr Res, 341, 365–373.CrossRefGoogle Scholar
  53. Shukla, N., Osmani, A. H., & Osmani, S. A. (2017). Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within Aspergillus nidulans biofilms. Mol Biol Cell, 28, 634–644.CrossRefGoogle Scholar
  54. Smits, G. J., van den Ende, H., & Klis, F. M. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology, 147, 781–794.CrossRefGoogle Scholar
  55. Tateno, O., Hirose, D., Osono, T., & Takeda, H. (2015). Beech cupules share endophytic fungi with leaves and twigs. Mycoscience, 56, 252–256.  https://doi.org/10.1016/j.myc.2014.07.005.CrossRefGoogle Scholar
  56. Tedersoo, L., Suvi, T., Jairus, T., & Kõljalg, H. (2009). Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol, 10, 1189–1201.CrossRefGoogle Scholar
  57. Thaler, A. D., Van Dover, C. L., & Vilgalys, R. (2012). Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol, 5, 270–273.  https://doi.org/10.1016/j.funeco.2011.07.002.CrossRefGoogle Scholar
  58. Tisthammer, K. H., Cobian, G. M., & Amend, A. S. (2016). Global biogeography of marine fungi is shaped by the environment. Fungal Ecol, 19, 39–46.  https://doi.org/10.1016/j.funeco.2015.09.003.CrossRefGoogle Scholar
  59. Xu, W., Guo, S., Pang, K. L., & Luo, Z. H. (2017). Fungi associated with chimney and sulfide samples from a south mid-Atlantic ridge hydrothermal site: distribution, diversity and abundance. Deep-Sea Res I Oceanogr Res Pap, 123, 48–55.  https://doi.org/10.1016/j.dsr.2017.03.004.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ramón Ahumada-Rudolph
    • 1
  • Vanessa Novoa
    • 2
    Email author
  • José Becerra
    • 3
  1. 1.Laboratorio de Bioprocesos y Biotratamientos, Departamento de Ingeniería en MaderasUniversidad del Bío-BíoConcepciónChile
  2. 2.Department of Geography, School of Architecture, Urbanism and GeographyUniversidad de ConcepciónConcepciónChile
  3. 3.Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile

Personalised recommendations