Advertisement

Topsoil and urban dust pollution and toxicity in Taranto (southern Italy) industrial area and in a residential district

  • Marco Trifuoggi
  • Giovanni PaganoEmail author
  • Rahime Oral
  • Maria Gravina
  • Maria Toscanesi
  • Maddalena Mozzillo
  • Antonietta Siciliano
  • Petra Burić
  • Daniel M. Lyons
  • Anna Palumbo
  • Philippe J. Thomas
  • Luigi D’Ambra
  • Anna Crisci
  • Marco Guida
  • Franca Tommasi
Article
  • 125 Downloads

Abstract

Adverse environmental conditions in the Taranto area (southern Italy) were investigated in studies of air, marine sediment, and human health. The present study aimed at providing unprecedented information on soil pollution and toxicity in a set of sites around recognized pollution sources in the Taranto area, since previous studies were focused on marine or air pollution, or on human health effects. The investigated area included a steel foundry and a power plant, as well as some sites located in an adjacent neighborhood. Surface soil samples and urban dust were collected and submitted to inorganic and organic analyses and tested for toxicity in two invertebrate bioassay models; a sea urchin (Sphaerechinus granularis) and an annelid (Caenorhabditis elegans). Inorganic analysis was carried out using ICP-MS for elemental composition for a total of 34 elements, whose levels were evaluated as a function of bioassay data analyzed through principal component analysis (PCA). Other analyses included asbestos search by powder X-ray diffraction (PXRD) and organic analysis for polycyclic aromatic hydrocarbons (PAHs) and aliphatic compounds (C10–C40). Toxicity bioassays were carried out on a sea urchin (Sphaerechinus granularis), and an annelid (Caenorhabditis elegans). Sea urchin bioassays evaluated effects of topsoil or street dust sample exposures (0.1 to 0.5% dry wt/vol) on developing embryos and on sperm, and scored as (a) % developmental defects, (b) inhibition of fertilization success and offspring damage, and (c) frequencies of mitotic aberrations. C. elegans mortality assay displayed significant toxicity associated with soil samples. The overall effects of samples showed very high toxicity at four out of nine sites. These effects were consistent with the highest levels measured for metals and PAHs. Further studies of health effects related to dust exposures in residential areas are warranted.

Graphical abstract

Keywords

Soil pollution Soil toxicity Steel foundry Sea urchins S. granularis C. elegans 

Notes

References

  1. Agnieszka, B., Tomasz, C., & Jerzy, W. (2014). Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology, 23, 1234–1244.  https://doi.org/10.1007/s10646-014-1266-y.CrossRefGoogle Scholar
  2. ARPA Puglia. (2016). Relazione sui dati ambientali dell’area di Taranto. http://www.arpa.puglia.it/c/document_library/get_file?uuid=96dc386e-2a6d-4758-8c47-e4d15d367c70&groupId=10125.
  3. ASTM E2172–01. (2014). Standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis elegans.Google Scholar
  4. Cardellicchio, N., Annicchiarico, C., Di Leo, A., Giandomenico, S., & Spada, L. (2016). The mar piccolo of Taranto: an interesting marine ecosystem for the environmental problems studies. Environmental Science and Pollution Research International, 23, 12495–12501.  https://doi.org/10.1007/s11356-015-4924-6.CrossRefGoogle Scholar
  5. Comba, P., Pirastu, R., Conti, S., De Santis, M., Iavarone, I., Marsili, G., Mincuzzi, A., Minelli, G., Manno, V., Minerba, S., Musmeci, L., Rashid, I., Soggiu, E., & Zona, A. (2012). Environment and health in Taranto, southern Italy: epidemiological studies and public health recommendations. Epidemiologia e Prevenzione, 36, 305–320.Google Scholar
  6. Costa, E., Piazza, V., Gambardella, C., Moresco, R., Prato, E., Biandolino, F., Cassin, D., Botter, M., Maurizio, D., D’Adamo, R., Fabbrocini, A., Faimali, M., & Garaventa, F. (2016). Ecotoxicological effects of sediments from Mar Piccolo, South Italy: toxicity testing with organisms from different trophic levels. Environmental Science and Pollution Research International, 23, 12755–12769.  https://doi.org/10.1007/s11356-015-5471-x.CrossRefGoogle Scholar
  7. Escarré, J., Lefèbvre, C., Raboyeau, S., Dossantos, A., Gruber, W., Cleyet Marel, J. C., Frérot, H., Noret, N., Mahieu, S., Collin, C., & van Oort, F. (2011). Heavy metal concentration survey in soils and plants of the Les Malines Mining District (southern France): implications for soil restoration. Water, Air, and Soil Pollution, 216, 485–504.  https://doi.org/10.1007/s11270-010-0547-1.CrossRefGoogle Scholar
  8. Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research International, 22, 9464–9474.  https://doi.org/10.1007/s11356-015-4111-9.CrossRefGoogle Scholar
  9. González-Alcaraz, M. N., Loureiro, S., & van Gestel, C. A. M. (2018). Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content. Chemosphere, 197, 26–32.  https://doi.org/10.1016/j.chemosphere.2018.01.019.CrossRefGoogle Scholar
  10. ISO - International Organization for Standardization 2016. UNI EN ISO 16171 (2016). Sludge, treated biowaste and soil - Determination of elements using inductively coupled plasma mass spectrometry (ICP-MS).Google Scholar
  11. Jia, G., Torri, G., Centioli, D., & Magro, L. (2013). A radiological survey and the impact of the elevated concentrations of (210)Pb and (210)Po released from the iron- and steel-making plant ILVA Taranto (Italy) on the environment and the public. Environmental Science and Process Impacts, 15, 677–689.  https://doi.org/10.1039/C2EM30784G.CrossRefGoogle Scholar
  12. Jiang, M., Zeng, G., Zhang, C., Ma, X., Chen, M., Zhang, J., Lu, L., Yu, Q., Hu, L., & Liu, L. (2013). Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District. PLoS One, 8, e71176.  https://doi.org/10.1371/journal.pone.0071176.CrossRefGoogle Scholar
  13. Jolliffe, I. T. (2002). Principal Component Analysis. Second edition. Berlin: Springer.Google Scholar
  14. Kanarbik, L., Blinova, I., Sihtmäe, M., Künnis-Beres, K., & Kahru, A. (2014). Environmental effects of soil contamination by shale fuel oils. Environmental Science and Pollution Research International, 21, 11320–11330.  https://doi.org/10.1007/s11356-014-3043-0.CrossRefGoogle Scholar
  15. Leo, A., Annicchiarico, C., Cardellicchio, N., Cibic, T., Comici, C., Giandomenico, S., & Spada, L. (2016). Mobilization of trace metals and PCBs from contaminated marine sediments of the Mar Piccolo in Taranto during simulated resuspension experiment. Environmental Science and Pollution Research International, 23, 12777–12790.  https://doi.org/10.1007/s11356-015-5472-9.CrossRefGoogle Scholar
  16. Liberti, L., Notarnicola, M., Primerano, R., & Zannetti, P. (2005). Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries. Journal of Air & Waste Management Association, 56, 255–260.CrossRefGoogle Scholar
  17. Loureiro, S., Ferreira, A. L., Soares, A. M., & Nogueira, A. J. (2005). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere, 61, 168–177.  https://doi.org/10.1016/j.chemosphere.2005.02.070.CrossRefGoogle Scholar
  18. Mataloni, F., Stafoggia, M., Alessandrini, E., Triassi, M., Biggeri, A., & Forastiere, F. (2014). A cohort study on mortality and morbidity in the area of Taranto, Southern Italy. Epidemiologia e Prevenzione, 36, 237–252.Google Scholar
  19. Ministero dell’Ambiente (2006). Decreto legislativo n. 152/2006. Norme in materia ambientale. (G.U. n. 88 del 14 aprile 2006) Titolo V Allegato n°5- Tab. n°1.Google Scholar
  20. Moschino, V., & Da Ros, L. (2016). Biochemical and lysosomal biomarkers in the mussel Mytilus galloprovincialis from the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Environmental Science and Pollution Research International, 23, 12770–12776.  https://doi.org/10.1007/s11356-015-4929-1.CrossRefGoogle Scholar
  21. Narracci, M., Acquaviva, M. I., & Cavallo, R. A. (2014). Mar Piccolo of Taranto: Vibrio biodiversity in ecotoxicology approach. Environmental Science and Pollution Research International, 21, 2378–2385.  https://doi.org/10.1007/s11356-013-2049-3.CrossRefGoogle Scholar
  22. Niemeyer, J. C., Moreira-Santos, M., Ribeiro, R., Rutgers, M., Nogueira, M. A., Mendes da Silva, E., & Sousa, J. P. (2015). Ecological risk assessment of a metal-contaminated area in the tropics. Tier II: Detailed assessment. PLoS One, 10, e0141772.  https://doi.org/10.1371/journal.pone.0141772.CrossRefGoogle Scholar
  23. Oral, R., Pagano, G., Siciliano, A., Toscanesi, M., Gravina, M., Mozzillo, M., Di Nunzio, A., Palumbo, A., Thomas, P. J., Tommasi, F., Burić, P., Lyons, D. M., Guida, M., & Trifuoggi, M. (2019). Soil pollution and toxicity in an area affected by emissions from a bauxite processing plant and a power plant in Gardanne (Southern France). Ecotoxicology and Environmental Safety, 170, 55–61.  https://doi.org/10.1016/j.ecoenv.2018.11.122.CrossRefGoogle Scholar
  24. Pagano, G., Esposito, A., Bove, P., de Angelis, M., Rota, A., & Giordano, G. G. (1983). The effects of hexavalent and trivalent chromium on fertilization and development in sea urchins. Environmental Research, 30, 442–452.  https://doi.org/10.1016/0013-9351(83)90230-X.CrossRefGoogle Scholar
  25. Pagano, G., Korkina, L. G., Iaccarino, M., De Biase, A., Deeva, I. B., Doronin, Y. K., Guida, M., Melluso, G., Meriç, S., Oral, R., Trieff, N. M., & Warnau, M. (2001). Developmental, cytogenetic and biochemical effects of spiked or environmentally polluted sediments in sea urchin bioassays. In P. Garrigues, C. H. Walker, & H. Barth (Eds.), Biomarkers in marine ecosystems: a practical approach (pp. 85–129). Amsterdam: Elsevier.Google Scholar
  26. Pagano, G., De Biase, A., Doronin, Y. K., Iaccarino, M., Meriç, S., Petruzzelli, D., Tünay, O., Warnau, M., & Trieff, N. M. (2002). Bauxite manufacturing residues from Gardanne (France) and Portovesme (Italy) exert different patterns of pollution and toxicity to sea urchin embryos. Environmental Toxicology and Chemistry, 21, 1272–1278.  https://doi.org/10.1002/etc.5620210623.CrossRefGoogle Scholar
  27. Pagano, G., Aliberti, F., Guida, M., Oral, R., Siciliano, A., Trifuoggi, M., & Tommasi, F. (2015). Rare earth elements in human and animal health: state of art and research priorities. Environmental Research, 142, 215–220.  https://doi.org/10.1016/j.envres.2015.06.039.CrossRefGoogle Scholar
  28. Pagano, G., Guida, M., Trifuoggi, M., Thomas, P. J., Palumbo, A., Romano, G., & Oral, R. (2017). Sea urchin bioassays in toxicity testing: I. Inorganics, organics, complex mixtures and natural products. Expert Opinion in Environmental Biology, 6, 1.  https://doi.org/10.4172/2325-9655.1000142.CrossRefGoogle Scholar
  29. Parizanganeh, A., Hajisoltani, P., & Zamani. (2010). Assessment of heavy metal pollution in surficial soils surrounding zinc industrial complex in Zanjan-Iran. Procedia Environmental Sciences, 2, 162–166.  https://doi.org/10.1016/j.proenv.2010.10.019.CrossRefGoogle Scholar
  30. Pirastu, R., Iavarone, I., Pasetto, R., Zona, A., & Comba, P. (2011). SENTIERI - Studio epidemiologico nazionale dei territori e degli insediamenti esposti a rischio da inquinamento: Risultati. Epidemiologia e Prevenzione, 35(5–6 Suppl. 4), 134–138 http://www.epiprev.it/Sentieri2011_Allegati.Google Scholar
  31. Płaza, G. A., Nałecz-Jawecki, G., Pinyakong, O., Illmer, P., & Margesin, R. (2010). Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Environmental Monitoring and Assessment, 163, 477–488.  https://doi.org/10.1007/s10661-009-0851-7.CrossRefGoogle Scholar
  32. Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., Yu, J., Yi, H., Ye, S., & Deng, R. (2018). Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610-611, 1154–1163.CrossRefGoogle Scholar
  33. Soleo, L., Lovreglio, P., Panuzzo, L., D'Errico, M. N., Basso, A., Gilberti, M. E., Drago, I., Tomasi, C., & Apostoli, P. (2012). Health risk assessment of exposure to metals in the workers of the steel foundry and in the general population of Taranto (Italy). Giornale Italiano di Medicina del Lavoro ed Ergonomia, 34, 381–391.Google Scholar
  34. US EPA. (1996) Method 3050B: acid digestion of sediments, sludges, and soils, revision 2. Washington, DC.Google Scholar
  35. Woszczyk, M., Spychalski, W., & Boluspaeva, L. (2018). Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan—Implications for the assessment of environmental quality. Environmental Monitoring and Assessment, 190(362), 362.  https://doi.org/10.1007/s10661-018-6733-0.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marco Trifuoggi
    • 1
  • Giovanni Pagano
    • 1
    • 2
    Email author
  • Rahime Oral
    • 3
  • Maria Gravina
    • 1
  • Maria Toscanesi
    • 1
  • Maddalena Mozzillo
    • 1
  • Antonietta Siciliano
    • 1
  • Petra Burić
    • 4
  • Daniel M. Lyons
    • 5
  • Anna Palumbo
    • 2
  • Philippe J. Thomas
    • 6
  • Luigi D’Ambra
    • 1
  • Anna Crisci
    • 7
  • Marco Guida
    • 1
  • Franca Tommasi
    • 8
  1. 1.Federico II Naples UniversityNaplesItaly
  2. 2.Stazione Zoologica Anton DohrnNaplesItaly
  3. 3.Faculty of FisheriesEge UniversityİzmirTurkey
  4. 4.Juraj Dobrila University of PulaPulaCroatia
  5. 5.Center for Marine ResearchRuđer Bošković InstituteRovinjCroatia
  6. 6.Environment and Climate Change Canada, Science & Technology BranchNational Wildlife Research Center – Carleton UniversityOttawaCanada
  7. 7.Pegaso Telematic UniversityNaplesItaly
  8. 8.Department of Biology“Aldo Moro” Bari UniversityBariItaly

Personalised recommendations