Presence and distributions of POPS in soil, atmospheric deposition, and bioindicator samples in an industrial-agricultural area in Turkey

  • Asude HanedarEmail author
  • Elçin Güneş
  • Gül Kaykioğlu
  • Suna Özden Çelik
  • Evren Cabi


In this study, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were detected in the soil, lichen pine needle, and total deposition samples in the Meriç-Ergene Basin, which is one of the most important regions in terms of industrial and agricultural activities in Turkey. POP concentrations were measured in 192 samples selected to represent four seasons over a 1-year period across four different regions: an intensive industrial area, an industrial + residential area, an agricultural area, and a background area. Total PAH concentrations are found in the range of 69.6–887.6 ng/g, 74.6–1277.7 ng/g, 113.4–588.9 ng/g, and 0.00–937.8 ng/m2-day; total PCB concentrations are 9.98–62.9 ng/g, 6.8–68.1 ng/g, 11.3–32.7 ng/g, and 0.00–144.4 ng/m2-day; total OCPs concentrations are 5.9–83.2 ng/g, 7.3–85.6 ng/g, 9.9–97.1 ng/g, and 0.00–137.6 ng/m2-day respectively for soil, lichen, pine needles, and bulk samples. The data were evaluated according to pollutant groups and spatial and temporal changes. The highest PAH and PCB values were detected in lichen samples from industrial areas. The highest OCP values were detected for total deposition and soil samples and in the agricultural area. The results showed that two- to three-ring PAHs, hepta-PCBs, and cyclodienes were the most widespread pollutant groups. Statistical analyses were performed to evaluate the accumulation and indication properties of the matrices in the study for 0.05 significance level. The pollutant group in which matrices are most similar is PAHs. Total deposition samples showed the most different pattern in terms of indications, especially for PCBs. For OCP results, the concentration values obtained in soil samples were different from all other matrices. It was determined that the indication properties of the matrices identified as pollutant indicators differ markedly from the pollutant type, and this difference is at the lowest level for PAH pollutants.

Graphical abstract


POPs PAHs PCB OCP Meriç-Ergene Basin Bioindicator 



This study was supported by TUBITAK (Scientific and Technological Research Council of Turkey) under Grant Project No. 112Y070.

Supplementary material

10661_2018_7159_MOESM1_ESM.docx (295 kb)
ESM 1 (DOCX 295 kb)


  1. Anttila, P., Brorstrom-Lunden, E., Hansson, K., Hakola, H., & Vestenius, M. (2016). Assessment of the spatial and temporal distribution of persistent organic pollutants (POPs) in the Nordic atmosphere. Atmospheric Environment, 140, 22–33.CrossRefGoogle Scholar
  2. Augusto, S., Maguas, C., Matos, J., Pereira, M. J., & Branquinho, C. (2010). Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environmenal Pollution, 158, 483–489.CrossRefGoogle Scholar
  3. Augusto, S., Máguas, C., & Branquinho, C. (2013). Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses—a review. Environmental Pollution, 180, 330–338.CrossRefGoogle Scholar
  4. Borghini, F., Grimalt, J. O., Sanchez-Hernandez, J. C., Barra, R., Garcia, C. J. T., & Focardi, S. (2005). Organochlorine compounds in soils and sediments of the mountain Andean Lakes. Environmental Pollution, 136, 253–266.CrossRefGoogle Scholar
  5. Bozlaker, A., Odabaşı, M., & Muezzinoglu, A. (2008). Dry deposition and soil–air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area. Environmental Pollution, 156, 784–793.CrossRefGoogle Scholar
  6. BPAP. (2017). Meric-Ergene Basin Protection Action Plan. Ankara: Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Water Management.Google Scholar
  7. Busso, I. T., Tames, F., Silva, J. A., Ramos, S., Homem, V., Ratola, N., & Carreras, H. (2018). Biomonitoring levels and trends of PAHs and synthetic musks associated with land use in urban environments. Science of the Total Environment, 618, 93–100.CrossRefGoogle Scholar
  8. Chen, J., Zhao, H., Gao, L., Henkelmann, B., & Schramm, K. W. (2006). Atmospheric PCDD/F and PCB levels implicated by pine (Cedrus deodara) needles at Dalian, China. Environmental Pollution, 144, 510–515.CrossRefGoogle Scholar
  9. Chovancova, J., Drobna, B., Fabisikova, A., Conka, K., Wimmerova, S., & Pavuk, M. (2014). Polychlorinated biphenyls and selected organochlorine pesticides in serum of Slovak population from industrial and non-industrial areas. Environmental Monitoring and Assessment, 186(11), 7643–7653.CrossRefGoogle Scholar
  10. Cipro, C. V. Z., Yogui, G. T., Bustamante, P., Taniguchi, S., Sericano, J. L., & Montone, R. C. (2011). Organic pollutants and their correlation with stable isotopes in vegetation from King George Island, Antarctica. Chemosphere, 85, 393–398.CrossRefGoogle Scholar
  11. Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: Lichens as bioindicators of air pollution asses—a review. Environmental Pollution, 114, 471–492.CrossRefGoogle Scholar
  12. De Nicola, F., Claudia, L., Maria Vittoria, P., Giulia, M., & Anna, A. (2011). Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment. Atmospheric Environment, 45, 1428–1433.CrossRefGoogle Scholar
  13. Demircioglu, E., Sofuoglu, A., Odabasi, M., Salihoglu, G., & Tasdemir, Y. (2011). Prediction of the PCB pollution in the soils of Bursa, an industrial city in Turkey. Journal of Hazardous Materials, 164, 1523–1531.Google Scholar
  14. Di Guardo, A., Zaccara, S., Cerabolini, B., Acciarri, M., Terzaghi, G., & Calamari, D. (2003). Conifer needles as passive biomonitors of the spatial and temporal distribution of DDT from a point source. Chemosphere, 52, 789–797.CrossRefGoogle Scholar
  15. Grimalt, J. O., & Van Drooge, B. L. (2006). Polychlorinated biphenyls in mountain pine (Pinus uncinata) needles from central Pyrenean high mountains (Catalonia, Spain). Ecotoxicology and Environment Safety, 63, 61–67.CrossRefGoogle Scholar
  16. Guidotti, M., Stella, D., Owezarek, M., De Marco, A., & De Simona, C. (2003). Lichens as polycyclic aromatic hydrocarbons bioaccumulators used in atmospheric pollution studies. Journal of Chromatography. A, 985, 185–190.CrossRefGoogle Scholar
  17. Haddaoui, I., Mahjoub, O., Mahjoub, B., Boujelben, A., & Bella, G. D. (2016). Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. Chemosphere, 146, 195–205.CrossRefGoogle Scholar
  18. Harner, T., & Bidleman, T. F. (1996). Measurements of octanol–air partition coefficient for polychlorinated biphenyls. Journal of Chemical & Engineering Data, 41, 895–899.CrossRefGoogle Scholar
  19. Harrad, S. J., Sewert, A. P., Alcock, R., Boumphrey, R., Burnett, V., Duarte-Davidson, R., Halsall, C., Sanders, G., Waterhouse, K., Wild, S. R., & Jones, K. C. (1994). Polychlorinated biphenyls (PCBs) in the British environment: sinks, sources and temporal trends. Environmental Pollution, 85, 131–146.CrossRefGoogle Scholar
  20. Hermanson, M. H., & Hites, R. A. (1990). Polychlorinated biphenyls in tree bark. Environmental Science & Technology, 24, 666–671.CrossRefGoogle Scholar
  21. Holoubek, I., Korinek, P., Seda, Z., Schneiderova, E., Holoubkova, I., Pacl, A., Triska, J., Cudlin, P., & Caslavsky, J. (2000). The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environmental Pollution, 109, 283–292.CrossRefGoogle Scholar
  22. Jones, K. C., Sanders, G., Wild, S. R., Burnett, V., & Johnston, A. E. (1992). Evidence for a decline of PCBs and PAH in rural vegetation and air in the United Kingdom. Nature, 356, 137–140.CrossRefGoogle Scholar
  23. Keymeulen, R., Gorgenyi, M., Heberger, K., Priksane, A., & Van Langenhove, H. (2001). Benzene, toluene, ethyl benzene and xylenes in ambient air and Pinus sylvestris L. needles: a comparative study between Belgium, Hungary and Latvia. Atmospheric Environment, 35, 6327–6335.CrossRefGoogle Scholar
  24. Klanova, J., Cupr, P., Barakova, D., Seda, Z., Andel, P., & Holoubek, I. (2009). Can pine needles indicate trends in the air pollution levels at remote sites? Environmental Pollution, 157, 3248–3254.CrossRefGoogle Scholar
  25. Kurt-Karakus, P. B., Ugranli-Cicek, T., Sofuoglu, S. C., Celik, H., Gungormus, E., Gedik, K., Sofuoglu, A., Okten, H. E., Birgul, A., Alegria, H., & Jones, K. C. (2018). The first countrywide monitoring of selected POPs: Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and selected organochlorine pesticides (OCPs) in the atmosphere of Turkey. Atmospheric Environment, 177, 154–165.CrossRefGoogle Scholar
  26. Lehndorff, E., & Schwark, L. (2004). Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler e part II: polycyclic aromatic hydrocarbons (PAH). Atmospheric Environment, 38, 3793–3808.CrossRefGoogle Scholar
  27. Llopa, E., Pinho, P., Matosa, P., Pereira, M. J., & Branquinho, C. (2012). The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecological Indicators, 13, 215–221.CrossRefGoogle Scholar
  28. Martinez, A., Erdman, N. R., Rodenburg, Z. L., Eastling, P. M., & Hornbuckle, K. C. (2012). Spatial distribution of chlordanes and PCB congeners in soil in Cedar Rapids, Iowa, USA. Environmental Pollution, 161, 222–228.CrossRefGoogle Scholar
  29. Meijer, S. N., Ockenden, W. A., Sweetman, A., Breivik, K., Grimalt, J. O., & Jones, K. C. (2003). Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environmental Science and Technology, 37, 667–672.CrossRefGoogle Scholar
  30. Murakami, M., Abe, M., Kakumoto, Y., Kawano, H., Fukasawa, H., Saha, M., & Takada, H. (2012). Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons. Atmospheric Environment, 54, 9–17.CrossRefGoogle Scholar
  31. Murugan, K., & Nasudevan, N. (2017). Spatial variance of POPs and heavy metals in transformer oil-contaminated soil around Tamil Nadu. Environmental Monitoring and Assessment, 189, 487.CrossRefGoogle Scholar
  32. Nagpal, N. K. (1992) Approved Water Quality Guidelines, Water Quality Ambient Water Quality Criteria for Polychlorinated Biphenyls (PCBs), Ministry of Environment, Lands and Parks, Province of British Columbia, Technical Appendix, Water Quality Branch, Water Management Division. Retrieved January 1992, from Accessed 11/30/2018.
  33. Neves, P. A., Colabuono, F. I., Ferreira, P. A. L., Kawakami, S. K., Taniguchi, S., Figueira, R. C. L., Mahiques, M. M., Montone, R. C., & Bícego, M. C. (2018). Depositional history of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in an Amazon estuary during the last century. Science of the Total Environment, 615, 1262–1270.CrossRefGoogle Scholar
  34. NIP (2010). National implementation plan for persistent organic pollutants (POPs) management in Turkey. Acara, A., Project No: Gf/Tur/03/008. Republic of Turkey Ministry of Environment and Forestry.Google Scholar
  35. Nisbet, C., & Lagoy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.CrossRefGoogle Scholar
  36. Ollivon, D., Blanchoud, H., Motelay-Massei, H., & Garban, B. (2002). Atmospheric deposition of PAHs to an urban site, Paris, France. Atmospheric Environment, 36, 2891–2900.CrossRefGoogle Scholar
  37. Park, J., Wade, T., & Sweet, S. (2001). Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmospheric Environment, 35, 3241–3249.CrossRefGoogle Scholar
  38. Park, J. S., Wade, T. L., & Sweet, S. T. (2002). Atmospheric deposition of PAHs, PCBs and organochlorine pesticides to Corpus Christi Bay, Texas. Atmospheric Environment, 36, 1707–1720.CrossRefGoogle Scholar
  39. Piccardo, M. T., Pala, M., Bonaccurso, B., Stella, A., Redaelli, A., Paola, G., & Valério, F. (2005). Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environmental Pollution, 133, 293–301.CrossRefGoogle Scholar
  40. Potter, T. L., Hapeman, C. J., McConnell, L. L., Harman-Fetcho, J. A., Schmidt, W. F., Rice, C. P., & Schaffer, B. (2014). Endosulfan wet deposition in Southern Florida (USA). Science of the Total Environment, 468–469, 505–513.CrossRefGoogle Scholar
  41. Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.CrossRefGoogle Scholar
  42. Ren, N., Que, M., Li, Y. F., Liu, Y., Wan, X., Xu, D., Sverko, E., & Ma, J. (2007). Polychlorinated biphenyls in Chinese surface soils. Environmental Science and Technology, 41, 3871–3876.CrossRefGoogle Scholar
  43. Riget, F., Asmund, G., & Aastrup, P. (2000). The use of lichen (Cetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Science of the Total Environment, 245, 137–148.CrossRefGoogle Scholar
  44. Salamova, A., & Hites, R. A. (2010). Evaluation of tree bark as a passive atmospheric sampler for flame retardants, PCBs, and organochlorine pesticides. Environmental Science & Technology, 44, 6196–6201.CrossRefGoogle Scholar
  45. Salihoglu, G., Salihoglu, N. K., Aksoy, E., & Tasdemir, Y. (2011). Spatial and temporal distribution of polychlorinated biphenyl (PCB) concentrations in soils of an industrialized city in Turkey. Journal of Environmental Management, 92, 724–732.CrossRefGoogle Scholar
  46. Sarkar, S. K., Bhattacharya, B. D., Bhattacharya, A., Chatterjee, M., Alam, A., Satpathy, K. K., & Jonathan, M. P. (2008). Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview. Environment International, 34, 1062–1071.CrossRefGoogle Scholar
  47. Shegunova, P., Klanova, J., & Holoubek, I. (2007). Residues of organochlorinated pesticides in soils from the Czech Republic. Environmental Pollution, 146, 257–261.CrossRefGoogle Scholar
  48. Shukla, V., Patel, D. K., Upret, D. K., & Yunnus, M. (2013). Lichens to distinguish urban from industrial PAHs. Environmental Chemistry Letters, 10, 159–164.CrossRefGoogle Scholar
  49. Skrbic, B., & Durisic–Mladenovic, N. (2007). Principal component analysis for soil contamination with organochlorine compounds. Chemosphere, 68, 2144–2152.CrossRefGoogle Scholar
  50. Tarcau, D., Cucu-Man, S., Boruvkova, J., Klanova, J., & Covaci, A. (2013). Organochlorine pesticides in soil, moss and tree-bark from north-eastern Romania. Science of the Total Environment, 456–457, 317–324.CrossRefGoogle Scholar
  51. U.S. EPA (Environmental Protection Agency). (1996). PCBs: cancer dose-response assessment and application to environmental mixtures. EPA/600/P–96/001F Accessed 11/30/2018.
  52. UNEP. (2018). Stockholm Convention, United Nations Environment Programme, Geneva. Available at: Last access 06/16/2018.
  53. Wagrowski, D. M., & Hites, R. A. (1997). Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environmental Science & Technology, 31, 279–282.CrossRefGoogle Scholar
  54. Wen, S., Yang, F., Li, J. G., Gong, Y., Zhang, X. L., & Hui, Y. (2009). Polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) monitored by tree bark in an E-waste recycling area. Chemosphere, 74, 981–987.CrossRefGoogle Scholar
  55. Yang, R., Yao, T., Xu, B., Jiang, G., & Zheng, X. (2008). Distribution of organochlorine pesticides (OCPs) in conifer needles in the southeast Tibetan Plateau. Environmental Pollution, 153, 92–100.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Asude Hanedar
    • 1
    Email author
  • Elçin Güneş
    • 1
  • Gül Kaykioğlu
    • 1
  • Suna Özden Çelik
    • 1
  • Evren Cabi
    • 2
  1. 1.Environmental Engineering Department, Corlu Engineering FacultyNamik Kemal UniversityCorluTurkey
  2. 2.Faculty of Arts and Sciences, Biology DepartmentNamik Kemal UniversityCorluTurkey

Personalised recommendations