Advertisement

High accuracy monitoring system to estimate forest road surface degradation on horizontal curves

  • Huseyin YurtsevenEmail author
  • Mustafa Akgul
  • Anil Orhan Akay
  • Serdar Akburak
  • Hikmet Kerem Cigizoglu
  • Murat Demir
  • Tolga Ozturk
  • Mert Eksi
Article
  • 101 Downloads

Abstract

Well-maintained pavements reduce occurring severe accidents on horizontal curves. For this reason, the monitoring and evaluation of pavement conditions are important. This study evaluates pavement conditions considering volumetric degradation or displacement on 11 horizontal curves in forest roads, depending on meteorological conditions, traffic effects, and curve parameters. Within this context, pavement displacement (degradation) was investigated and measured with terrestrial laser scanning (TLS) for a year on a monthly basis. In this study, two multiple regression models were developed to estimate the degradation values of a forest road. According to model 1, which was developed to estimate the loss volume values, the adjusted R2 was 0.658. For model 2, which was developed to estimate the gain volume values, the adjusted R2 was 0.490. Validations of models were evaluated with different statistical tests. In conclusion, volumetric degradation can be calculated with TLS-based data. Forest road designers should determine horizontal curve characteristics, taking into consideration the pavement degradation and traffic safety.

Keywords

Forest road Road deformation Point cloud Traffic Meteorological data Terrestrial laser scanning Surface displacement 

Notes

Funding information

This paper is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the grant number 214O214.

References

  1. Abdi, E., Sisakht, S. R., & Rad, M. M. (2012). Improving cross drain systems to minimize sediment delivery using GIS. Forestry Studies in China, 14(4), 299–306.  https://doi.org/10.1007/s11632-012-0411-z.CrossRefGoogle Scholar
  2. Akay, A. O., Akgul, M., & Demir, M. (2018). Determination of temporal changes on forest road pavement with terrestrial laser scanner. Fresenius Environmental Bulletin, 27(3), 1437–1448.Google Scholar
  3. Akgul, M., Yurtseven, H., Akburak, S., Demir, M., Cigizoglu, H. K., Ozturk, T., Eksi, M., & Akay, A. O. (2017). Short term monitoring of forest road pavement degradation using terrestrial laser scanning. Measurement, 103, 283–293.  https://doi.org/10.1016/j.measurement.2017.02.045.CrossRefGoogle Scholar
  4. Ali, T. A. (2004). On the selection of an interpolation method for creating a terrain model (TM) from LIDAR data. Proceedings of the American Congress on Surveying and Mapping (ACSM) Conference.Google Scholar
  5. Anastasopoulos, P. C., & Mannering, F. L. (2011). An empirical assessment of fixed and random parameter logit models using crash-and non-crash-specific injury data. Accident Analysis & Prevention, 43(3), 1140–1147.CrossRefGoogle Scholar
  6. Aram, A. (2010). Effective safety factors on horizontal curves of two-lane highways. Journal of Applied Sciences (Faisalabad), 10(22), 2814–2822.CrossRefGoogle Scholar
  7. Bater, C. W., & Coops, N. C. (2009). Evaluating error associated with LiDAR-derived DEM interpolation. Computers & Geosciences, 35(2), 289–300.  https://doi.org/10.1016/j.cageo.2008.09.001.CrossRefGoogle Scholar
  8. Boghian, V., Apăfăian, A., Bratu, C., & Ignea, G. (2015). A review on degradation factors affecting the forest roads and their prevention. In Proceedings of the Biennial International Symposium. Forest and Sustainable Development, Brașov, Romania, 24–25th October 2014 (pp. 209–214). Transilvania University Press.Google Scholar
  9. Buddhavarapu, P., Banerjee, A., & Prozzi, J. A. (2013). Influence of pavement condition on horizontal curve safety. Accident Analysis & Prevention, 52, 9–18.  https://doi.org/10.1016/j.aap.2012.12.010.CrossRefGoogle Scholar
  10. Castagnetti, C., Bertacchini, E., Capra, A., & Dubbini, M. (2012). Terrestrial laser scanning for preserving cultural heritage: analysis of geometric anomalies for ancient structures. Proceedings of the FIG Working Week.Google Scholar
  11. Chang, K., Chang, J., & Liu, J. (2005). Detection of pavement distresses using 3D laser scanning technology. Computing in Civil Engineering, 1–11.  https://doi.org/10.1061/40794(179)103.
  12. Chaplot, V., Darboux, F., Bourennane, H., Leguédois, S., Silvera, N., & Phachomphon, K. (2006). Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, 77(1), 126–141.  https://doi.org/10.1016/j.geomorph.2005.12.010.CrossRefGoogle Scholar
  13. Ciobanu, V., Alexandru, V., & Săceanu, S. (2012). Degradation forms of forest gravel road roadways under heavy vehicles used in timber transport. Bulletin of the Transilvania University of Brasov, Series II. Forestry, Wood Industry, Agricultural Food Engineering (1).Google Scholar
  14. Das, V. R., Jayashree, M., & Rahul, S. (2016). Lateral placement of vehicles on horizontal curves. Transportation Research Procedia, 17, 43–51.  https://doi.org/10.1016/j.trpro.2016.11.059.CrossRefGoogle Scholar
  15. Díaz-Vilariño, L., González-Jorge, H., Martínez-Sánchez, J., Bueno, M., & Arias, P. (2016). Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement, 85, 132–141.  https://doi.org/10.1016/j.measurement.2016.02.030.CrossRefGoogle Scholar
  16. Eskioglou, P. (2001). The reduction of the destructive elements of forest road construction projects. Proceedings from the 1st Ecological Protection of the Planet earth Inter. Conference.Google Scholar
  17. Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283–1298.  https://doi.org/10.1016/j.cageo.2005.11.008.CrossRefGoogle Scholar
  18. Hutchinson, M. (1996). A locally adaptive approach to the interpolation of digital elevation models. Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling (pp. 21–26).Google Scholar
  19. Lee, J., Nam, B., & Abdel-Aty, M. (2015). Effects of pavement surface conditions on traffic crash severity. Journal of Transportation Engineering, 141(10), 04015020.  https://doi.org/10.1061/(ASCE)TE.1943-5436.0000785.CrossRefGoogle Scholar
  20. Li, Z., Zhu, Q., & Gold, C. (2005). Digital terrain modeling: principles and methodology. New York: CRC Press.Google Scholar
  21. Morgado, J., & Neves, J. (2014). Work zone planning in pavement rehabilitation: integrating cost, duration, and user effects. Journal of Construction Engineering and Management, 140(11), 04014050.  https://doi.org/10.1061/(ASCE)CO.1943-7862.0000888.CrossRefGoogle Scholar
  22. Nasiri, M., & Hojjati, S. M. (2012). Designing geometric specifications of main access road and its effect on pavement rutting. Biological Research, 3(5), 2491–2499.Google Scholar
  23. Nasiri, M., Hosseini, S. A., Tafazoli, M., & Sohrab, M. (2012). The role of logging operation on rut development in Hyrcanian forest roads. Journal of Applied Biological Sciences, 6(3), 7–11.Google Scholar
  24. O'Sullivan, D., & Unwin, D. (2010). Geographic information analysis. Hoboken: Wiley.CrossRefGoogle Scholar
  25. Peckham, R. J., & Jordan, G. (2007). Digital terrain modelling: development and applications in a policy support environment. Berlin, New York: Springer.CrossRefGoogle Scholar
  26. Sheimy, N., Valeo, C., & Habib, A. (2005). Digital terrain modeling: acquisition, manipulation and applications. Artech House, Incorporated.Google Scholar
  27. Sugden, B. D., & Woods, S. W. (2007). Sediment production from forest roads in western Montana. Journal of the American Water Resources Association, 43(1), 193–206.  https://doi.org/10.1111/j.1752-1688.2007.00016.x.CrossRefGoogle Scholar
  28. Tsai, J. Y.-C., Li, F., & Wu, Y.-C. (2013). A new rutting measurement method using emerging 3D line-laser-imaging system. International Journal of Pavement Research and Technology, 6(5), 667–672.  https://doi.org/10.6135/2fijprt.org.tw/2f2013.6(5).667.CrossRefGoogle Scholar
  29. Wilson, J. P., & Gallant, J. C. (2000). Terrain analysis: principles and applications. New York: Wiley.Google Scholar
  30. Zhou, Q., Lees, B., & Tang, G. (2008). Advances in digital terrain analysis. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Forestry, Department of Surveying and CadastreIstanbul University-CerrahpasaIstanbulTurkey
  2. 2.Faculty of Forestry, Department of Forest Construction and TransportationIstanbul University-CerrahpasaIstanbulTurkey
  3. 3.Faculty of Forestry, Department of Soil Science and EcologyIstanbul University-CerrahpasaIstanbulTurkey
  4. 4.Faculty of Civil Engineering, Department of Civil EngineeringIstanbul Technical UniversityIstanbulTurkey
  5. 5.Faculty of Forestry, Department of Landscape ArchitectureIstanbul University-CerrahpasaIstanbulTurkey

Personalised recommendations