Soil organic carbon and total nitrogen stocks in alpine ecosystems of Altun Mountain National Nature Reserve in dry China

  • Zhenzhen Zhao
  • Xiangfeng Zhang
  • Shikui DongEmail author
  • Yu Wu
  • Shiliang Liu
  • Xukun Su
  • Xuexia Wang
  • Yong Zhang
  • Lin Tang


The Altun Mountain National Nature Reserve (AMNNR), characterized by complex topography, is located on the northern edge of the Qinghai–Tibetan Plateau. The stocks of soil organic carbon (SOC) and total nitrogen (TN) are critically important for carbon and nitrogen sequestration in dry alpine ecosystems of the AMNNR, which is a “natural laboratory” for assessing the carbon and nitrogen storage without human disturbance. We explored the stocks of SOC and TN in soils of different dry alpine ecosystems by sampling 23 sites across the AMNNR during 2013. The results showed that the SOC and TN stocks of AMNNR varied significantly with ecosystem types. The SOC stocks of 0–15 cm were highest in the alpine wet meadow (7.96 kg/m2), followed by alpine steppe (2.63 kg/m2). The stocks of SOC and TN in 0–5 and 5–10 cm soils of alpine wet meadow were significantly (P < 0.05) higher than those in the soils of other dry alpine ecosystems. In the whole AMNNR, total storage of SOC and TN were approximately 80.97 and 4.48 Tg, 34.25% of SOC and 24.01% of TN were stored in the alpine steppe, 21.51% of SOC and 26.01% of TN were stored in the alpine scrub, the largest ecosystem in the AMNNR. Our findings suggested it is important to protect the soil and vegetation of the dry alpine ecosystems, particularly the alpine wet meadow and alpine scrub to promote the carbon storage.


Qinghai–Tibetan Plateau Environmental factor PCA analysis 



The authors wish to express the gratitude to the reviewers and editors for their time and effort.

Funding information

Our work was financially supported by the grants from the Ministry of Science and Technology of the People’s Republic of China (2016YFC0501906) and the state key laboratory of environment simulation and pollution control (17L03ESP).

Supplementary material

10661_2018_7138_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 35 kb)


  1. Ayoubi, S., Karchegani, P. M., Mosaddeghi, M. R., & Honarjoo, N. (2012). Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil & Tillage Research, 121, 18–26. Scholar
  2. Baumann, F., He, J. S., Schmidt, K., Kuhn, P., & Scholten, T. (2009). Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 15(12), 3001–3017. Scholar
  3. Bonde, T. A., Schnurer, J., & Rosswall, T. (1988). Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biology & Biochemistry, 20(4), 447–452. Scholar
  4. Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strand, L., Vesterdal, L., & Westman, C. J. (2003). Soil carbon stores in Nordic well-drained forest soils - relationships with climate and texture class. Global Change Biology, 9(3), 358–370.
  5. Chen, L.-F., He, Z.-B., Du, J., Yang, J.-J., & Zhu, X. (2016). Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena, 137, 37–43. Scholar
  6. Delgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Eldridge, D. J., Soliveres, S., Bowker, M. A., Prado-Comesaña, A., Gaitán, J., Quero, J. L., Ochoa, V., Gozalo, B., García-Gómez, M., García-Palacios, P., Berdugo, M., Valencia, E., Escolar, C., Arredondo, T., Barraza-Zepeda, C., Boeken, B. R., Bran, D., Cabrera, O., Carreira, J. A., Chaieb, M., Conceição, A. A., Derak, M., Ernst, R., Espinosa, C. I., Florentino, A., Gatica, G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J. R., Hernández, R. M., Huber-Sannwald, E., Jankju, M., Mau, R. L., Miriti, M., Monerris, J., Morici, E., Muchane, M., Naseri, K., Pucheta, E., Ramírez, E., Ramírez-Collantes, D. A., Romão, R. L., Tighe, M., Torres, D., Torres-Díaz, C., Val, J., Veiga, J. P., Wang, D., Yuan, X., & Zaady, E. (2016). Human impacts and aridity differentially alter soil N availability in drylands worldwide. Global Ecology and Biogeography, 25(1), 36–45. Scholar
  7. Fang, X., Xue, Z., Li, B., & An, S. (2012). Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena, 88(1), 6–13.
  8. Feng, X., Fu, B., Lu, N., Zeng, Y., & Wu, B. (2013). How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Scientific Reports, 3.
  9. Ferrarini, A., Serra, P., Almagro, M., Trevisan, M., & Amaducci, S. (2014). Linking bioenergy and ecological services along field margins: the hedge-biomass project. Papers of the 22nd European Biomass Conference: Setting the Course for a Biobased Economy, 257–273.Google Scholar
  10. Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277–U210. Scholar
  11. Gao, X., Meng, T., Zhao, X. (2017). Variations of soil organic carbon following land use change on deeploess hillsopes in China. Land Degradation & Development, 28(7), 1902–1912.
  12. Gregorich, E. G., Carter, M. R., Angers, D. A., Monreal, C. M., & Ellert, B. H. (1994). Towards a minimum data set to assess soil organic-matter quality in agricultural soils. Canadian Journal of Soil Science, 74(4), 367–385.
  13. Guillaume, T., Maranguit, D., Murtilaksono, K., & Kuzyakov, Y. (2016). Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations. Ecological Indicators, 67, 49–57. Scholar
  14. Guohong, L. U., Li, Z., Xianli, Z., Qingyu, J. I. A., Yanbing, X. I. E., & Guangsheng, Z. (2006). Vertical distribution of soil organic carbon and total nitrogen in reed wetland (in Chinese). The Journal of Applied Ecology, 17(3), 384–389.
  15. Hankins, J., Launchbaugh, K., & Hyde, G. (2004). Rangeland Iinventory as a tool for science education. Rangelands, 26(1), 28–32.[28:RIAATF]2.0.CO;2.Google Scholar
  16. He, N., Yu, Q., Wu, L., Wang, Y., & Han, X. (2008). Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology & Biochemistry, 40(12), 2952–2959. Scholar
  17. Hobbie, S. E., Schimel, J. P., Trumbore, S. E., & Randerson, J. R. (2000). Controls over carbon storage and turnover in high-latitude soils. Global Change Biology, 6, 196–210. Scholar
  18. Hoffmann, U., Hoffmann, T., Johnson, E. A., & Kuhn, N. J. (2014). Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta). Catena, 113, 107–121. Scholar
  19. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and begetation. Ecological Applications, 10(2), 423–436.[0423:TVDOSO]2.0.CO;2.Google Scholar
  20. Khormali, F., Ayoubi, S., Foomani, F. K., Fatemi, A., & Hemmati, K. (2007). Tea yield and soil properties as affected by slope position and aspect in Lahijan area, Iran. International Journal of Plant Production, 1(1), 95–111.
  21. Kirkpatrick, J. B., Green, K., Bridle, K. L., & Venn, S. E. (2014). Patterns of variation in Australian alpine soils and their relationships to parent material, vegetation formation, climate and topography. Catena, 121, 186–194. Scholar
  22. Kirschbaum, M. U. F. (1995). The temperature-dependence of soil organic-matter decompositon, and the effect of global warming on soil organic-C storage. Soil Biology & Biochemistry, 27(6), 753–760. Scholar
  23. Li, C., Li, Q., Zhao, L., Ge, S., Chen, D., Dong, Q., & Zhao, X. (2016). Land-use effects on organic and inorganic carbon patterns in the topsoil around Qinghai Lake basin, Qinghai-Tibetan Plateau. Catena, 147, 345–355. Scholar
  24. Li, C., Li, Y., & Tang, L. (2010). Soil organic carbon stock and carbon efflux in deep soils of desert and oasis. Environmental Earth Sciences, 60(3), 549–557. Scholar
  25. Li, Y., Dong, S., Liu, S., Zhou, H., Gao, Q., Cao, G., Wang, X., Su, X., Zhang, Y., Tang, L., Zhao, H., & Wu, X. (2015). Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biology & Biochemistry, 80, 306–314.
  26. Liu, S. L., Du, Y. G., Zhang, F. W., Lin, L., Li, Y. K., Guo, X. W., Li, Q.,  & Cao, G. M., (2016). Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau. Journal of Mountain Science, 13(10), 1806–1817.
  27. Liu, S. L., Zhao, H. D., Su, X. K., Deng, L., Dong, S. K., & Zhang, X. (2015). Spatio-temporal variability in rangeland conditions associated with climate change in the Altun Mountain National Nature Reserve on the Qinghai-Tibet Plateau over the past 15 years. The Rangeland Journal, 37(1), 67–75. Scholar
  28. Liu, Z., Shao, M. a., & Wang, Y. (2011). Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture Ecosystems & Environment, 142(3–4), 184–194. Scholar
  29. Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R., & Chapin, F. S. (2004). Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431(7007), 440–443. Scholar
  30. Mendes, L. W., de Lima Brossi, M. J., Kuramae, E. E., & Tsai, S. M. (2015). Land-use system shapes soil bacterial communities in Southeastern Amazon region. Applied Soil Ecology, 95, 151–160. Scholar
  31. Mu, C., Zhang, T., Zhang, X., Cao, B., Peng, X., Cao, L., & Su, H. (2016). Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena, 141, 85–91.
  32. Musinguzi, P., Ebanyat, P., Tenywa, J. S., Basamba, T. A., Tenywa, M. M., & Mubiru, D. N. (2016). Critical soil organic carbon range for optimal crop response to mineral fertiliser nitrogen on a ferralsol. Experimental Agriculture, 52(4), 635–653. Scholar
  33. Nolan, A. J., & Robertson, J. S. (1987). Regional trends in dry and moist Scottish moorland vegetation in relation to climate, soils and other ecological factors. The Journal of Ecology, 75(4), 1145–1157.
  34. Pham Thi Quynh, A., Gomi, T., MacDonald, L. H., Mizugaki, S., Phung Van, K., & Furuichi, T. (2014). Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: A plot-scale study. Geoderma, 232, 352–362. Scholar
  35. Puget, P., & Drinkwater, L. E. (2001). Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Science Society of America Journal, 65(3), 771–779. Scholar
  36. Schaller, G. B., & Liu, W. L. (1996). Distribution, status, and conservation of wild yak Bos grunniens. Biological Conservation, 76(1), 1–8.
  37. Semenchuk, P. R., Elberling, B., Amtorp, C., Winkler, J., Rumpf, S., Michelsen, A., & Cooper, E. J. (2015). Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry, 124(1), 81–94. Scholar
  38. Sidari, M., Ronzello, G., Vecchio, G., & Muscolo, A. (2008). Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (southern Italy). European Journal of Soil Biology, 44(4), 364–372. Scholar
  39. Smith, S. D., Huxman, T. E., Zitzer, S. F., Charlet, T. N., Housman, D. C., Coleman, J. S., Fenstermaker, L. K., Seemann, J. R., & Nowak, R. S. (2000). Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 408(6808), 79–82. Scholar
  40. Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M.,  Minasny, B., McBratney, AB., de Courcelles, V.D., Singh, K., Wheeler, I., Abbott, L., Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., Lehmann, J., O'Donnell, A.G., Parton, W.J., Whitehead, D., &Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99.
  41. Sun, S.-Q., Bhatti, J. S., Jassal, R. S., Chang, S. X., Arevalo, C., Black, T. A., & Sidders, D. (2015). Stand age and productivity control soil carbon dioxide efflux and organic carbon dynamics in poplar plantations. Soil Science Society of America Journal, 79(6), 1638–1649. Scholar
  42. Tardy, V., Mathieu, O., Lévêque, J., Terrat, S., Chabbi, A., Lemanceau, P., Ranjard, L., & Maron, P. A. (2014). Stability of soil microbial structure and activity depends on microbial diversity. Environmental Microbiology Reports, 6(2), 173–183. Scholar
  43. Tiessen, H., Cuevas, E., & Chacon, P. (1994). The role of soil organic-matter in sustaining soil fertility. Nature, 371(6500), 783–785. Scholar
  44. Tsui, C. C., Chen, Z. S., & Hsieh, C. F. (2004). Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma, 123(1–2), 131–142. Scholar
  45. Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land in the sea—how can it occur. Biogeochemistry, 13(2),87–115.
  46. Wang, G. X., Qian, J., Cheng, G. D., & Lai, Y. M. (2002). Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 291(1–3), 207–217.
  47. Wang, J., Fu, B. J., Qiu, Y., & Chen, L. D. (2001). Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China. Journal of Arid Environments, 48(4), 537–550. Scholar
  48. Wang, Y., Li, Y., Ye, X., Chu, Y., & Wang, X. (2010). Profile storage of organic/inorganic carbon in soil: From forest to desert. Science of the Total Environment, 408(8), 1925–1931. Scholar
  49. Wen, L., Dong, S., Li, Y., Li, X., Shi, J., Wang, Y., Liu, D., & Ma, Y. (2013). Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS One, 8(3), e58432. Scholar
  50. Willaarts, B. A., Oyonarte, C., Muñoz-Rojas, M., Ibáñez, J. J., & Aguilera, P. A. (2015). Environmental factors controlling soil organic carbon stocks in two contrasting Mediterranean climatic areas of southern Spain. Land Degradation & Development, 27(3), 603–611.
  51. Su, X., Dong, S., Shi-liang, Liu, S., Liu, Y., Shi, J., W, Y., et al. (2014). Effects of land use/land cover change ( LUCC) on habitats of Tibetan wild donkey in Aerjin Mountain National Nature Reserve(in Chinese). Chinese Journal of Ecology, 33(01), 141–148.
  52. Yang, Y., Fang, J., Tang, Y., Ji, C., Zheng, C., He, J., & Zhu, B. (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14(7), 1592–1599.
  53. Yang, Y., Xie, J., Sheng, H., Chen, G., Li, X., & Yang, Z. (2009). The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China. Journal of Geographical Sciences, 19(1), 49–57. Scholar
  54. Yang, Y. H., Fang, J. Y., Guo, D. L., Ji, C. J., & Ma, W. H. (2010). Vertical patterns of soil carbon, nitrogen and carbon: Nitrogen stoichiometry in Tibetan grasslands. Biogeosciences Discussions, 2010, 1–24. Scholar
  55. Yimer, F., Ledin, S., & Abdelkadir, A. (2006). Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma, 135, 335–344. Scholar
  56. Yue, H., Wang, M., Wang, S., Gilbert, J. A., Sun, X., Wu, L., Lin, Q., Hu, Y., Li, X., He, Z., Zhou, J., & Yang, Y. (2015). The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME Journal, 9(9), 2012–2020. Scholar
  57. Zhang, Y., Dong, S., Gao, Q., Liu, S., Zhou, H., Ganjurjav, H., & Wang, X. (2016). Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Science of the Total Environment, 562, 353–363. Scholar
  58. Zhang, Y., Jiang, Y., Liang, W., Wen, D., & Zhang, Y. (2004). Vertical variation and storage of nitrogen in an aquic brown soil under different land uses. Journal of Forestry Research, 15(3), 192–197. Scholar
  59. Zhao, Q., & Zeng, D. (2006). Phosphorus fractions and phosphomonoesterase activities in sandy soils under a temperate savanna and a neighboring Mongolian pine plantation. Journal of Forestry Research, 17(1), 25–30. Scholar
  60. Zhao, W., Zhang, R., Huang, C., Wang, B., Cao, H., Koopal, L. K., & Tan, W. (2016). Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou watershed on the loess plateau. Catena, 139, 191–198. Scholar
  61. Zhao, Z., Dong, S., Jiang, X., Liu, S., Ji, H., Li, Y., Han, Y., & Sha, W. (2017). Effects of warming and nitrogen deposition on CH4, CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau. Science of the Total Environment, 592, 565–572. Scholar
  62. Zhao, Z., Dong, S., Jiang, X., Zhao, J., Liu, S., Yang, M., Han, Y., & Sha, W. (2018). Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai-Tibetan Plateau? Science of the Total Environment, 625, 539–546. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhenzhen Zhao
    • 1
    • 2
  • Xiangfeng Zhang
    • 1
  • Shikui Dong
    • 1
    Email author
  • Yu Wu
    • 1
  • Shiliang Liu
    • 1
  • Xukun Su
    • 1
  • Xuexia Wang
    • 1
  • Yong Zhang
    • 1
  • Lin Tang
    • 1
  1. 1.School of EnvironmentBeijing Normal UniversityBeijingChina
  2. 2.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina

Personalised recommendations