Hydrological and hydrochemical behavior of a riparian zone in a high-order flatland stream

  • E. A. VeizagaEmail author
  • C. J. Ocampo
  • L. Rodríguez


Hydrological and hydrochemical processes occurring within riparian zones in temperate mid-latitudes flatland areas have significant implications for water management by controlling nutrient transfer between the watershed and the stream system. The riparian zone in a high-order flatland stream located within a 7063-km2 agricultural watershed in Argentina was investigated to study its hydrological connectivity to upland zones, interactions with the stream, and their implications for groundwater hydrochemistry. The analysis was based on 9-year-long time series of groundwater/stream water levels collected along a 220-m-long transect comprising six piezometers, a river stage sensor, and hydrochemical information from 37 groundwater/stream water sampling campaigns. Samples were analyzed for electrical conductivity (EC), Cl, SO4+2, (Ca+2 + Mg+2), pH, and redox potential (ORP). Data were interpreted using descriptive statistics, statistical tests, groundwater flux calculations, and identification of hydrological patterns and associated hydrochemical responses. The system was hydrologically controlled by shallow groundwater. Three representative landscape hydrological patterns were identified: disconnected, incipient-weakly connected, and fully connected. Groundwater hydrochemistry was closely linked to hydrological connectivity, which played an important role in the mobilization and fluxes of solutes. Overall, groundwater EC, Cl, SO4+2, and (Ca+2 + Mg+2) concentrations decreased from upland to lowland. For full connectivity, Cl concentrations reduced 33%, while SO4+2 reduced 42%, demonstrating the system’s buffering capacity. This investigation constitutes the first attempt to formulate the riparian zone functioning in this agricultural region and has contributed to the understanding on the complex interactions between hydrologic regimes of large flatland-high-order streams and shallow groundwater systems in fine-texture sediments.


Riparian zones Buffering capacity Hydrological connectivity Sulfate reduction 



The authors wish to thank G. Contini, M.V. Morresi, G. Bernal, and research fellow M. V. Gonzalez for assistance in the field and laboratory work. Thanks are also owed to landowner Mr. Corazza for providing access to the field site. This research was financially supported by Universidad Nacional del Litoral–SeCyT CAI + D program, projects number R9-P61, R3-P11, and 50320160200394LI, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Many thanks to the anonymous reviewer for his/her valuable comments.


  1. Angier, J. T., McCarty, G. W., & Prestegaard, K. L. (2005). Hydrology of a first-order riparian zone and stream, mid-Atlantic coastal plain, Maryland. Journal of Hydrology, 309(1), 149–166.CrossRefGoogle Scholar
  2. Arelovich, M., Bravo, D., & Martinez, F. (2011). Development, characteristics, and trends for beef cattle production in Argentina. Animal Frontiers, I(2).
  3. Aubert, A. H., Gascuel-Odoux, C., Gruau, G., Akkal, N., Faucheux, M., Fauvel, Y., Grimaldi, A. H. C., Hamon, Y., Jaffrezic, A., Lecoz-Boutnik, M., Molenat, J., Petitjean, P., Ruiz, L., & Merot, P. (2013). Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study. Hydrology and Earth System Sciences, 17(4), 1379–1391.CrossRefGoogle Scholar
  4. Bates, P. D., Stewart, M. D., Desitter, A., Anderson, M. G., Renaud, J. P., & Smith, J. A. (2000). Numerical simulation of floodplain hydrology. Water Resources Research, 36, 2517–2529.CrossRefGoogle Scholar
  5. Bouwer, H., & Rice, R. C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12(3), 423–428.CrossRefGoogle Scholar
  6. Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff dominated geomorphic systems. Hydrological Processes, 21, 1749–1763.CrossRefGoogle Scholar
  7. Burt, T. P., Pinay, G., Matheson, F. E., Haycock, N. E., Butturini, A., Clement, J. C., & Maitre, V. (2002). Water table fluctuations in the riparian zone: comparative results from a pan-European experiment. Journal of Hydrology, 265(1–4), 129–148.CrossRefGoogle Scholar
  8. Cabezas, A., García, M., Gallardo, B., Gonzalez, E., Gonzalez-Sanchis, M., & Comin, F. A. (2009). The effect of anthropogenic disturbance on the hydrochemical characteristics of riparian wetlands at the middle Ebro River (NE Spain). Hydrobiologia, 617(1), 101–116.CrossRefGoogle Scholar
  9. Carlyle, G. C., & Hill, A. R. (2001). Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry. Journal of Hydrology, 247, 151–168.CrossRefGoogle Scholar
  10. Cey, E. E., Rudolph, D. L., Aravena, R., & Parkin, G. (1999). Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. Journal of Contaminant Hydrology, 37(1), 45–67.CrossRefGoogle Scholar
  11. Cirmo, C. P., & McDonnell, J. J. (1997). Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: a review. Journal of Hydrology, 199(1), 88–120.CrossRefGoogle Scholar
  12. Clesceri, L.S., Greenberg, A.E., Eaton, A.E., 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC (ed. 20).Google Scholar
  13. Correll, D. L., Jordan, T. E., & Weller, D. E. (1997). Failure of agricultural riparian buffers to protect surface waters from groundwater nitrate contamination. In J. Gibert, J. Mathieu, & F. Fournier (Eds.), Groundwater/surface water ecotones: biological and hydrological interactions and management options (pp. 162–165). New York: Cambridge Univ. Press.CrossRefGoogle Scholar
  14. Devito, K. J., & Hill, A. R. (1997). Sulphate dynamics in relation to groundwater–surface water interactions in headwater wetlands of the southern Canadian Shield. Hydrological Processes, 11(5), 485–500.CrossRefGoogle Scholar
  15. Devito, K. J., Hill, A. R., & Roulet, N. (1996). Groundwater–surface water interactions in headwater forested wetlands of the Canadian Shield. Journal of Hydrology, 181(1), 127–147.CrossRefGoogle Scholar
  16. Devito, K. J., Fitzgerald, D., Hill, A. R., & Aravena, R. (2000). Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone. Journal of Environmental Quality, 29, 1075–1084.CrossRefGoogle Scholar
  17. Exner, E., D'Angelo, C. H., & Pensiero, J. F. (2004). Vegetación y flora de la reserva universitaria de la Escuela Granja de Esperanza (Santa Fe, Argentina). FAVE Sección Ciencias Agrarias, 3(1/2), 53–76.CrossRefGoogle Scholar
  18. García, A. R., Maisonnave, R., Massobrio, M. J., de Iorio, F., & Alicia, R. (2012). Fieldscale evaluation of water fluxes and manure solution leaching in feedlot pen soils. Journal of Environmental Quality, 41(5), 1591–1599.CrossRefGoogle Scholar
  19. Gold, A. J., Groffmann, P. M., Addy, K., Kellogg, D. Q., Stolt, M., & Rosenblatt, A. E. (2001). Landscape attributes as controls on groundwater nitrate removal capacity in riparian zones. Journal of the American Water Resources Association, 37, 1457–1464.CrossRefGoogle Scholar
  20. Halliday, S. J., Wade, A. J., Skeffington, R. A., Neal, C., Reynolds, B., Rowland, P., Neal, M., & Norris, D. (2012). An analysis of long-term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales. Science of the Total Environment, 434, 186–200.CrossRefGoogle Scholar
  21. Hefting, M. M., Clement, J. C., Bienkowski, P., Dowrick, D., Guenat, C., Butturini, A., Topa, S., Pinay, G., & Verhoeven, J. T. (2005). The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering, 24(5), 465–482.CrossRefGoogle Scholar
  22. Hénault-Ethier, L., Larocque, M., Perron, R., Wiseman, N., & Labrecque, M. (2017). Hydrological heterogeneity in agricultural riparian buffer strips. Journal of Hydrology, 546, 276–288.CrossRefGoogle Scholar
  23. Hernandez, M. E., & Mitsch, W. J. (2007). Denitrification in created riverine wetlands: influence of hydrology and season. Ecological Engineering, 30(1), 78–88.CrossRefGoogle Scholar
  24. Hill, A. R. (1990). Groundwater flow paths in relation to nitrogen chemistry in the near-stream zone. Hidrobiologia, 206, 39–52.CrossRefGoogle Scholar
  25. Hill, A. R. (1996). Nitrate removal in stream riparian zones. Journal of Environmental Quality, 25(4), 743–755.CrossRefGoogle Scholar
  26. Hill, A. R., Devito, K. J., & Vidon, P. G. (2014). Long-term nitrate removal in a stream riparian zone. Biogeochemistry, 121(2), 425–439.CrossRefGoogle Scholar
  27. Hoffmann, C. C., Berg, P., Dahl, M., Larsen, S. E., Andersen, H. E., & Andersen, B. (2006). Groundwater flow and transport of nutrients through a riparian meadow—field data and modeling. Journal of Hydrology, 331, 315–335.CrossRefGoogle Scholar
  28. INTA. (1991). Soil maps of Argentine Republic, sheet 3160–26/25-Esperanza-Pilar.Google Scholar
  29. Iriondo, M., & Kröhling, D. M. (1995). El sistema eólico pampeano. Museo Provincial de Ciencias Naturales “Florentino Ameghino”.Google Scholar
  30. Jacks, G., & Norrström, A. C. (2004). Hydrochemistry and hydrology of forest riparian wetlands. Forest Ecology and Management, 196(2), 187–197.CrossRefGoogle Scholar
  31. Jensen, K. J., Engesgaard, P., Johnsen, A. R., Marti, V., & Nilsson, B. (2017). Hydrological mediated denitrification in groundwater below a seasonal flooded restored riparian zone. Water Resources Research, 53(3), 2074–2094.CrossRefGoogle Scholar
  32. Kirchner, J. W., Feng, X., Neal, C., & Robson, A. J. (2004). The fine structure of water‐quality dynamics: the (high‐frequency) wave of the future. Hydrological Processes, 18(7), 1353–1359.Google Scholar
  33. Kröhling, D., & Brunetto, E. (2013). Bases Conceptuales y Metodológicas para el Ordenamiento Territorial en el Medio Rural—Región Centro, Argentina, 1ra Edición, Capítulo: Marco Geológico y Geomorfología de la cuenca del Arroyo Cululú, provincia de Santa Fe, Publisher: Secretaria de Ciencia, Tecnología e Innovación Productiva de la Nación, UNC, UNRC, UNL, UNR, UNER., Editors: O. Giayetto, J. Plevich, V. Lallana, M. Pilatti, pp. 483–512.Google Scholar
  34. Lamontagne, S., Leaney, F. W., & Herczeg, A. L. (2005). Groundwater–surface water interactions in a large semi-arid floodplain: implications for salinity management. Hydrological Processes, 19(16), 3063–3080.CrossRefGoogle Scholar
  35. Ledesma, J. L., Futter, M. N., Laudon, H., Evans, C. D., & Köhler, S. J. (2016). Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. Science of the Total Environment, 560, 110–122.CrossRefGoogle Scholar
  36. Mander, U., Kuusemets, V., Lohmus, K., & Mauring, T. (1997). Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecological Engineering, 8, 299–324.CrossRefGoogle Scholar
  37. McDonald, J. H. (2009). Handbook of biological statistics (2nd ed.). Baltimore: Sparky House Publishing 317 pp.Google Scholar
  38. Molénat, J., Durand, P., Gascuel-Odoux, C., Davy, P., & Gruau, G. (2002). Mechanisms of nitrate transfer from soil to stream in an agricultural watershed of French Brittany. Water, Air, and Soil Pollution, 133(1–4), 161–183.CrossRefGoogle Scholar
  39. Mosconi, F. P., Priano, L. J., Hein, N. E., Moscatelli, C. J., Salazar, C., Gutiérrez, T., & Caseres, L. (1981). Mapa de Suelos de la Provincia de Santa Fe. Tomo I. Argentina. INTA-MAG.Google Scholar
  40. Neal, C., Reynolds, B., Norris, D., Kirchner, J. W., Neal, M., Rowland, P., Wickham, H., Harman, S., Armstrong, L., Sleep, D., Lawlor, A., Woods, C., Williams, B., Fry, M., Newton, G., & Wright, D. (2011). Three decades of water quality measurements from the upper Severn experimental catchments at Plynlimon, Wales: an openly accessible data resource for research, modelling, environmental management and education. Hydrological Processes, 25, 3818–3830.CrossRefGoogle Scholar
  41. Ocampo, C. J., Sivapalan, M., & Oldham, C. E. (2006a). Hydrological connectivity of upland-riparian zones in agricultural catchments: implications for runoff generation and nitrate transport. Journal of Hydrology, 331, 643–658.CrossRefGoogle Scholar
  42. Ocampo, C. J., Sivapalan, M., & Oldham, C. E. (2006b). Field exploration of coupled hydrological and biogeochemical catchment responses and a unifying perceptual model. Advances in Water Resources, 29(2), 161–180.CrossRefGoogle Scholar
  43. Ocampo, C.J., Morresi, M., & Contini, G. (2010). Strategies for the study of runoff generation mechanisms in large flatland catchments: a study case in Cululú catchment (Santa Fe, Argentina). I Congreso Internacional de Hidrología de Llanuras. Azul, Argentina. Set 21–24 2010, 248-255.Google Scholar
  44. R Core Team. (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL.Google Scholar
  45. Reynolds, B., Renshaw, M., Sparks, T. H., Crane, S., Hughes, S., Brittain, S. A., & Kennedy, V. H. (1997). Trends and seasonality in stream water chemistry in two moorland catchments of the Upper River Wye, Plynlimon. Hydrology and Earth System Sciences, 1, 571–581. Scholar
  46. Reynolds-Vargas, J., Fraile-Merino, J., & Hirata, R. (2006). Trends in nitrate concentrations and determination of their origin using stable isotopes (18O and 15N) in groundwater of the western Central Valley, Costa Rica. AMBIO, 35, 229–236.CrossRefGoogle Scholar
  47. Stevens, M., Hoag, C., Tilley, D., & St. John, L. (2012). Plant guide for common threesquare (Schoenoplectus pungens). Aberdeen: USDA-Natural Resources Conservation Service, Aberdeen Plant Materials Center.Google Scholar
  48. Stewart, M. D., Bates, P. D., Anderson, M. G., Price, D. A., & Burt, T. P. (1999). Modelling floods in hydrologically complex lowland river reaches. Journal of Hydrology, 223(1), 85–106.CrossRefGoogle Scholar
  49. Stieglitz, M., Sharman, J., McNamara, J., Engel, V., Shanley, J., & Kling, G. W. (2003). An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochemical Cycles, 17(4), 1105.CrossRefGoogle Scholar
  50. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920.CrossRefGoogle Scholar
  51. Stumm, W. & Morgan, J.J. (1996). Aquatic chemistry. Chemical equilibria and rates in natural waters. Environmental Science and Technology. A Wiley-Interscience Series of Texts and Monographs. Third Edition. 1022 pp.Google Scholar
  52. Svejcar, T. (1997). Riparian zones: 1) what are they and how do they work? Rangelands, 19(4), 4–7.Google Scholar
  53. Szilágyi, J., Gribovszki, Z., Kalicz, P., & Kucsara, M. (2008). On diurnal riparian zone groundwater-level and streamflow fluctuations. Journal of Hydrology, 349, 1–5.CrossRefGoogle Scholar
  54. Universidad Nacional del Litoral-UNL, Instituto Nacional del Agua-INA, Instituto Nacional de Tecnología Agropecuaria-INTA. (2007). Influencia de los cambios físicos y climáticos en el régimen de escurrimiento del río Salado—Tramo inferior. Informe final (Influence of physical and climate changes on the streamflow regime of the Salado River-lower reach—final report). Santa Fe, Argentina.Google Scholar
  55. Vidon, P. G. F., & Hill, A. R. (2004). Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292, 210–228.CrossRefGoogle Scholar
  56. Vinson, D. S., Block, S. E., Crosey, L. J., & Dahm, C. N. (2007). Biogeochemistry at the zone of intermittent saturation: field-based study of the shallow alluvial aquifer, Rio Grande, New Mexico. Geosphere, 3(5), 366–380.CrossRefGoogle Scholar
  57. Wroblicky, G. J., Campana, M. E., Maurice Valetti, H., & Dahm, C. N. (1998). Seasonal variation in surface–subsurface water exchange and lateral hyporheic area of two stream–aquifer systems. Water Resources Research, 34(3), 317–328.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centro de Estudios Hidroambientales (CENEHA)–Facultad de Ingeniería y Ciencias Hídricas (FICH)Universidad Nacional del Litoral (UNL)Santa FeArgentina
  2. 2.School of Civil, Environmental and Mining EngineeringUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations