Using multivariate techniques as a strategy to guide optimization projects for the surface water quality network monitoring in the Velhas river basin, Brazil

  • Giovanna Moura Calazans
  • Carolina Cristiane Pinto
  • Elizângela Pinheiro da Costa
  • Anna Flávia Perini
  • Sílvia Corrêa Oliveira


Surface water quality monitoring networks are usually deployed and rarely re-evaluated with regard to their effectiveness. In this sense, this work sought to evaluate and to guide optimization projects for the water quality monitoring network of the Velhas river basin, using multivariate statistical methods. The cluster, principal components, and factorial analyses, associated with non-parametric tests and the analysis of violation to the standards set recommended by legislation, identified the most relevant water quality parameters and monitoring sites, and evaluated the sampling frequency. Thermotolerant coliforms, total arsenic, and total phosphorus were considered the most relevant parameters for characterization of water quality in the river basin. The monitoring sites BV156, BV141, BV142, BV150, BV137, and BV153 were considered priorities for maintenance of the network. The multivariate statistical analysis showed the importance of a monthly sampling frequency, specifically the parameters considered most important.


Cluster analysis Principal component analysis Factorial analysis Network monitoring assessment Brazilian watershed 



We would like to thank the Institute of Water Management of Minas Gerais (Igam) and its technical team for providing the monitoring data and for the constant support and service.

Funding information

This study received financial supports from the National Counsel of Technological and Scientific Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Foundation of Support Research of the State of Minas Gerais (FAPEMIG).


  1. Achieng, A. O., Raburu, P. O., Kipkorir, E. C., Ngodhe, S. O., Obiero, K. O., & Ani-Sabwa, J. (2017). Assessment of water quality using multivariate techniques in river Sosiani, Kenya. Environmental Monitoring and Assessment, 189(280), 1–13.Google Scholar
  2. Almeida, K. C. B. (2013). Avaliação da rede de monitoramento de qualidade das águas superficiais da Bacia do Rio das Velhas utilizando o método da entropia. Master’s thesis. Federal University of Minas Gerais, Postgraduate program in Sanitation, Environment and Water Resources, Belo Horizonte, Minas Gerais. 98 p.Google Scholar
  3. APHA, AWWA, WEF. (2012). Standard methods for examination of water and wastewater (22nd ed.). Washington: American Public Health Association 1360p.Google Scholar
  4. Borba, R., Figueiredo, P., Rawlins, B. R., Matschullat, B., & J. (2000). Arsenic in water and sediment in the Iron Quadrangle, state of Minas Gerais, Brazil. Revista Brasileira de Geociencias, 30(3), 558–561.CrossRefGoogle Scholar
  5. Chen, Q., Wu, W., Blanckaert, K., Ma, J., & Huang, G. (2012). Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. Journal of Environmental Management, 110, 116–124.CrossRefGoogle Scholar
  6. Chow, M. F., Shiah, F. K., Lai, C. C., Kuo, H. Y., Wang, K. W., Lin, C. H., Chen, T. Y., Kobayashi, C., & Ko, Y. (2016). Evaluation of surface water quality using multivariate statistical techniques: a case study of Fei-Tsui reservoir basin, Taiwan. Environment and Earth Science, 75(6), 1–15.Google Scholar
  7. Christofaro, C., & Leão, M. M. D. (2009). Caracterização temporal do arsênio nos cursos d’água da bacia hidrográfica do Rio das Velhas, MG, Brasil, ao longo de uma década (1998-2007). Ambiente e Água – An Interdisciplinar. Journal of Applied Science, 4(3), 54–66.Google Scholar
  8. Comitê da bacia hidrográfica do rio das Velhas – CBH Velhas. (2014). Análise integrada, articulação e compatibilização dos interesses internos e externos, cenários e prognósticos: relatório 03, revisão 02 – atualização do plano diretor de recursos hídricos da bacia hidrográfica do rio das Velhas. 397 p.Google Scholar
  9. Costa, E. P., Pinto, C. C., Soares, A. L. C., Melo, L. D. V., & Oliveira, S. C. (2017). Evaluation of violations in water quality standards in the monitoring network of São Francisco River basin, the third largest in Brazil. Environmental Monitoring and Assessment, 189, 2–16.CrossRefGoogle Scholar
  10. Ferraz, H. D. A. (2012). Associação da ocorrência de cianobactérias às variações de parâmetros de qualidade da água em quatro bacias hidrográficas de Minas Gerais. Federal University of Minas Gerais. Accessed 20 June 2017.
  11. Finotti, A. R., Finkler, R., Silva, M. D., & Cemim, G. (2009). Monitoramento de Recursos Hídricos em Áreas Urbanas (272p). Caxias do Sul: Educs.Google Scholar
  12. Gamble, A., & Babbar-Sebens, M. (2012). On the use of multivariate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River Basin, Indiana, USA. Environmental Monitoring and Assessment, 184, 845–875.CrossRefGoogle Scholar
  13. Gu, Q., Zhang, Y., Ma, L., Li, J., Wang, K., Zheng, K., Zhang, X., & Sheng, L. (2016). Assessment of reservoir water quality using multivariate statistical techniques: a case study of Qiandao Lake, China. Sustainability, 8(243), 1–17.Google Scholar
  14. Güler, C., Kurt, M. A., Alpaslan, M., & Akbulut, C. (2012). Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414-415, 435–451.CrossRefGoogle Scholar
  15. Hunt, C. D., Rust, S. W., & Sinnott, L. (2008). Application of statistical modeling to optimize a coastal water quality monitoring program. Environmental Monitoring and Assessment, 137(1–3), 505–522.CrossRefGoogle Scholar
  16. Instituto Mineiro de Gestão das Águas – Igam. (2013). Identificação de municípios com condição crítica para a qualidade de água na bacia do rio das Velhas. Belo Horizonte: Igam 48p.Google Scholar
  17. Instituto Mineiro de Gestão das Águas – Igam. (2018). Monitoramento da Qualidade das Águas. Available at: Accessed in June/2018.
  18. İşçen, C. F., Altin, A., Şenoğlu, B., & Yavuz, H. S. (2009). Evaluation of surface water quality characteristics by using multivariate statistical techniques: a case study of the Euphrates river basin, Turkey. Environmental Monitoring and Assessment, 151, 259–264.CrossRefGoogle Scholar
  19. Jardim, B. F. M. (2011). Variação dos parâmetros físicos e químicos das águas superficiais da bacia do rio das Velhas - MG e sua associação com as florações de cianobactérias. Federal University of Minas Gerais. Accessed 20 June 2017.
  20. Kennish, M. J., Fertig, B. M., & Lathrop, R. G. (2012). Assessment of nutrient loading and eutrophication in Barnegat Bay-Little Egg Harbor, New Jersey in support of nutrient management planning. Technical report (Institute of Marine and Coastal Sciences, Rutgers University) to the New England interstate water pollution control commission, Lowell, Massachusetts. 258 p.Google Scholar
  21. Khalil, B., Ouarda, T. B. M. J., ST-Hilaire, A., & Chebana, F. (2010). A statistical approach for the rationalization of water quality indicators in surface water quality monitoring networks. Journal of Hydrology, 386, 173–185.CrossRefGoogle Scholar
  22. Khalil, B., Ou, C., Proulx-McInnis, S., St-Hilaire, A., & Zanacic, E. (2014). Statistical assessment of the surface water quality monitoring network in Saskatchewan. Water, Air, and Soil Pollution, 225(2128), 1–22.Google Scholar
  23. Krishna, A. K., Satyanarayanan, M., & Govil, P. K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, 15(167), 366–373.CrossRefGoogle Scholar
  24. Krogmann, D. W., Butalla, K., & Sprinkle, J. (1986). Blooms of cyanobacteria on the Potomac River. Plant Physiology, 80, 667–671.CrossRefGoogle Scholar
  25. Lattin, J., Carroll, J. D., & Green, P. E. (2011). Análise de Dados Multivariados. São Paulo: Cengage Learning 455 p.Google Scholar
  26. Ling, T. Y., Soo, C. L., Liew, J. J., Nyanti, L., Sim, S. F., & Grinang, J. (2017). Application of multivariate statistical analysis in evaluation of surface river water quality of a tropical river. Journal of Chemistry, 1–13.
  27. Liu, Y., Zheng, B. H., Wang, M., Xu, Y. X., & Qin, Y. W. (2014). Optimization of sampling frequency for routine river water quality monitoring. SCIENCE CHINA Chemistry, 57(5), 772–778.CrossRefGoogle Scholar
  28. Luo, K., Hu, X., He, Q., Wu, Z., Cheng, H., Hu, Z., & Mazumder, A. (2017). Using multivariate techniques to assess the effects of urbanization on surface water quality: a case study in the Liangjiang New Area, China. Environmental Monitoring and Assessment, 189(174), 1–11.Google Scholar
  29. Macdonald, D. D., Clark, M. J. R., Whitfield, P. H., & Wong, M. P. (2009). Designing monitoring programs for water quality based on experience in Canada I: theory and framework. Trends in Analytical Chemistry, 28(2), 204–213.CrossRefGoogle Scholar
  30. Mavukkandy, M. O., Karmakar, S., & Harikumar, P. S. (2014). Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India). Environmental Science and Pollution Research, 21, 10045–10066.CrossRefGoogle Scholar
  31. Minas Gerais. Conselho Estadual de Política Ambiental; Conselho Estadual de Recursos Hídricos de Minas Gerais. (2008). Normative Deliberation COPAM/CERH-MG n. 01, de 05 de maio de 2008. Provides for the classification of water bodies and environmental guidelines for their classification and establishes the conditions and standards for effluents dicharge and other measures.Google Scholar
  32. Mingoti, S. A. (2005). Análise de Dados Através de Métodos de Estatística Multivariada: uma abordagem aplicada. Belo Horizonte: Editora UFMG 297 p.Google Scholar
  33. Monica, N., & Choi, K. S. (2016). Temporal and spatial analysis of water quality in Saemangeum watershed using multivariate statistical techniques. Paddy and Water Environment, 14(3), 3–17.CrossRefGoogle Scholar
  34. Naddeo, V., Scannapieco, D., Zarra, T., & Belgiorno, V. (2012). River water quality assessment: implementation of non-parametric tests for sampling frequency optimization. Land Use Policy, 30, 197–205.CrossRefGoogle Scholar
  35. Park, S. Y., Choi, J. H., Wang, S., & Park, S. S. (2006). Design of a water quality monitoring network in a large river system using the genetic algorithm. Ecological Modelling, 199(3), 289–297.CrossRefGoogle Scholar
  36. Ruzdjak, A. M., & Ruzdjak, D. (2015). Evaluation of river water quality variations using multivariate statistical techniques. Environmental Monitoring and Assessment, 187(215), 1–14.Google Scholar
  37. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river, Japan. Environmental Modelling & Software, 22, 464–475.CrossRefGoogle Scholar
  38. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northen Greece. Water Research, 37, 4119–4124.CrossRefGoogle Scholar
  39. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) – a case sudy. Water Research, 38, 3980–3992.CrossRefGoogle Scholar
  40. Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques – a case study. Analytica Chimica Acta, 538, 355–374.CrossRefGoogle Scholar
  41. Taoufik, G., Khouni, I., & Ghrabi, A. (2017). Assessment of physico-chemical and microbiological surface water quality using multivariate statistical techniques: a case study of the Wadi El-Bey River, Tunisia. Arabian Journal of Geosciences, 10(181), 1–19.Google Scholar
  42. Tavakol, M., Arjmandi, R., Shayeghi, M., Monavari, S. M., & Karbassi, A. (2017). Application of multivariate statistical methods to optimize water quality monitoring network with emphasis on the pollution caused by fish farms. Iranian Journal of Public Health, 46(1), 83–92.Google Scholar
  43. Telci, I. T., Nam, K., Guan, J., & Aral, M. M. (2009). Optimal water quality monitoring network design for river systems. Journal of Environmental Management, 90, 2987–2998.CrossRefGoogle Scholar
  44. Trindade, A. L. C., Almeida, K. C. B, Barbosa, P. E., & Oliveira, S. M. A. C. (2017). Tendências temporais e espaciais da qualidade das águas superficiais da sub-bacia do Rio das Velhas, estado de Minas Gerais. Engenharia Sanitaria e Ambiental, 22(1), 13–24.Google Scholar
  45. Vieira, J. S., Pires, J. C. M., Martins, F. G., Vilar, V. J. P., Boaventura, R. A. R., & Botelho, C. M. S. (2012). Surface water quality assessment of Lis River using multivariate statistical methods. Water, Air, and Soil Pollution, 223, 5549–5561.CrossRefGoogle Scholar
  46. Wang, J., Liu, G., Liu, H., Lam, P. K., & S. (2017). Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe river, Anhui, China. Science of the Total Environment, 583, 421–431.CrossRefGoogle Scholar
  47. Ye, R., Liu, L., Wang, Q., Ye, X., Cao, Q., He, Q., & Cai, Y. (2017). Identification of coastal water quality by multivariate statistical techniques in two typical bays of northern Zhejiang Province, East China Sea. Acta Oceanologica Sinica, 36(2), 1–10.CrossRefGoogle Scholar
  48. Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yan, Q., Wang, Y., & Ye, F. (2009). Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environmental Monitoring and Assessment, 152, 123–131.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidade Federal de Minas Gerais - Escola de Engenharia - Campus PampulhaBelo HorizonteBrazil

Personalised recommendations