Advertisement

Water quality index for agricultural systems in Northwest Uruguay

  • Gabriela Eguren
  • Noelia Rivas-Rivera
  • Claudio García
  • Bernardo Böcking
  • Santiago Bandeira
Article
  • 25 Downloads

Abstract

Agricultural systems have experienced rapid expansion and intensification in the last several decades. In Uruguay, since the beginning of 2000, the most common cropping systems have included soybeans. Currently, this crop is expanding towards lowlands traditionally occupied by rice in rotation with pastures. However, the environmental effects of agricultural intensification and diversification are not well known. Thus, some indices have been proposed to quantify the changes in agricultural production systems and assess water quality. The main goal of this study was to develop a water quality index (WQI) to assess the impacts of the diversification of rice production systems in northwest Uruguay. The study was carried out in an agricultural basin where other summer crops have been incorporated in the rice-pasture sequence. Agriculture intensification and crop diversification indices were calculated using information provided by farmers. Water samples were collected downstream of the production area before crop sowing and after crop harvest (2008–2009 to 2010–2011 and 2016–2017 to 2017–2018). Biochemical oxygen demand, nitrates, total phosphorus, fecal coliforms, and total suspended solids were the variables that mainly explained the effects of the agricultural activities on water quality. The proposed water quality index included these unweighted variables, which allowed for the pre-sowing and post-harvest to be differentiated, as well as the degree of diversification. Therefore, the proposed WQI constitutes a tool that can be used to evaluate the water quality in an agricultural basin. Likewise, it can be used to select agricultural sequences that generate the least possible impacts on the associated water resources.

Keywords

Water quality index Agricultural systems Agriculture intensification Crop diversification index 

Notes

Acknowledgements

We express our thanks to Mr. César Burgos and Roberto Guzman for their assistance with the fieldwork.

Funding information

This study was funded by the National Agricultural Research Institute Project SA01.4 and Development Basic Sciences Foundation.

References

  1. Abbasi, T., & Abbasi, S. A. (2012). Why Water-Quality Indices. In Water quality indices. Elsevier.  https://doi.org/10.1016/B978-0-444-54304-2.00001-4.CrossRefGoogle Scholar
  2. APHA, A. A. P. H., AWWA, A. W. W. A., & WPCF, W. P. C. F. (1995). In M. A. H. Franson, A. E. Greenberg, J. J. Connors, & D. Jenkins (Eds.), Standard methods for examination of water and waste water (15th ed.). Washington.Google Scholar
  3. Arbeletche, P., Coppola, M., & Paladino, C. (2012). Análisis del agro-negocio como forma de gestión empresarial en América del Sur: el caso uruguayo. Agrociencia Uruguay, 16(1), 110–119.Google Scholar
  4. Caride, C., Piñeiro, G., & Paruelo, J. M. (2012). How does agricultural management modify ecosystem services in the argentine pampas? The effects on soil C dynamics. Agriculture, Ecosystems & Environment, 154, 23–33.CrossRefGoogle Scholar
  5. Castillo, J., Bonilla, F., Lucas, T., Amaral, R., & Terra, J. (2013). La integración del cultivo de soja a la rotación arroz-pastura en el este. Revista Arroz, 73, 6–39.Google Scholar
  6. Cho, A., Tun Oo, A., & Speelman, S. (2016). Assessment of household food security through crop diversification in Natmauk township, Magway Region, Myanmar. Tropentag 2016. Conference on International Research on Food Security, 1–5.Google Scholar
  7. Cordero, R. D., Ruiz, J. E., & Vargas, E. F. (2005). Spatial temporal determination of phosphorus concentration in Lake of Tota. Revista Colombiana de Química, 34(2), 211–218.Google Scholar
  8. Cruse, R., Wang, E., Lee, S., & Chen, X. (2014). Agriculture and water quality. In A. Satinder (Ed.), Comprehensive water quality and purification. Volume 4: Sustainability of water quality (pp. 42–56). Elsevier Inc..Google Scholar
  9. Cude, C. G. (2001). Oregon water quality index a tool for evaluating water quality management effectiveness. Journal of the American Water Resources Association, 37(1), 125–137.CrossRefGoogle Scholar
  10. Cuffney, T. F., Meador, M. R., Porter, S. D., & Gurtz, M. E. (2000). Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima river basin, Washington. Environmental Monitoring and Assessment, 64, 259–270.CrossRefGoogle Scholar
  11. De La Fuente, E. B., & Suárez, S. A. (2008). Problemas ambientales asociados a la actividad humana: La agricultura. Ecologia Austral, 18, 239–252.Google Scholar
  12. Debels, P., Figueroa, R., Urrutia, R., Barra, R., & Niell, X. (2005). Evaluation of water quality in the Chillan River (Central Chile) using physicochemical parameters and a modified water quality index. Environmental Monitoring and Assessment, 110, 301–322.CrossRefGoogle Scholar
  13. Di Rienzo, J., Casanoves, F., Balzarini, M., González, L., Tablada, M., & Robledo, C. (2016). InfoStat versión 2016. Córdoba: Grupo Infostat, FCA, Universidad Nacional de Córdoba http://www.infostat.com.ar.Google Scholar
  14. DIEA. (2010). Encuesta de arroz zafra 2009/2010. Serie encuestas N°291. División de Estadísticas Agropecuarias. Ministerio de ganadería, agricultura y pesca. http://www2.mgap.gub.uy/portal/page.aspx?2,diea,diea,-ipr-produccion-vegetal-arroz,O,es,0,
  15. DIEA. (2014). Encuesta arroz. Zafra 2013/14. Serie encuestas N°322. División de Estadísticas Agropecuarias. Ministerio de ganadería, agricultura y pesca. http://www2.mgap.gub.uy/portal/page.aspx?2,diea,diea,-ipr-produccion-vegetal-arroz,O,es,0,
  16. Farahani, H. J., Peterson, G. A., & Westfall, D. G. (1998). Dryland cropping intensification: a fundamental solution to efficient use of precipitation. Advances in Agronomy, 64, 197–223.CrossRefGoogle Scholar
  17. Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68, 643–653.CrossRefGoogle Scholar
  18. Giri, S., & Qiu, Z. (2016). Understanding the relationship of land uses and water quality in twenty first century: A review. Journal of Environmental Management, 173, 41–48.CrossRefGoogle Scholar
  19. Gonzaga De Toledo, L., & Nicolella, G. (2002). Indice de qualidade de agua em microbacia sob uso agricola e urbano. Scientia Agricola, 59(1), 181–186.CrossRefGoogle Scholar
  20. Hammer, Ø., Harper, D. A. T. a. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.Google Scholar
  21. Hoorman, J., Hone, T., Sudman, T., Dirksen, T., Iles, J., & Islam, K. R. (2008). Agricultural impacts on Lake and stream water quality in grand lake St. Marys, western Ohio. Water, Air, and Soil Pollution, 193(1–4), 309–322.CrossRefGoogle Scholar
  22. Kumar, S., & Gupta, S. (2015). Crop diversification towards high-value crops in India: a state level empirical analysis. Agricultural Economics Research Review, 28(2), 339–350.CrossRefGoogle Scholar
  23. Lal, H., & McKinney, S. (2017). WQIag—water quality index for runoff water from agricultural fields Natural Resources Conservation Service. United States Department of Agriculture. Agronomy Technical Note, 11, 1–20. https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=40577.wba.Google Scholar
  24. Lanfranco, B. (2013). Arroz o soja: ¿es realmente esa la cuestión? Revista INIA, 34, 38–43.Google Scholar
  25. Ledesma, C., Bonansea, M., Rodriguez, C. M., & Delgado, A. R. S. (2013). Determinación de indicadores de eutrofización en el embalse Río Tercero, Córdoba (Argentina). Revista Ciencia Agronomica, 44(3), 419–425.CrossRefGoogle Scholar
  26. Mon, R., Irurtia, C., Botta, G., Pozzolo, O., Bellora, F., Rivero, D., & Bomben, M. (2007). Effects of supplementary irrigation on chemical and physical soil properties in the rolling pampa region of Argentina. Ciencia e Investigación Agraria, 34(3), 187–194.CrossRefGoogle Scholar
  27. Monteiro, M. I. C., Ferreira, F. N., De Oliveira, N. M. M., & Avila, A. K. (2003). Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Analytica Chimica Acta, 477(1), 125–129.CrossRefGoogle Scholar
  28. Monzon, J. P., Mercau, J. L., Andrade, J. F., Caviglia, O. P., Cerrudo, A. G., Cirilo, A. G., Vega, C. R. C., Andrade, F. H., & Calviño, P. A. (2014). Maize-soybean intensification alternatives for the pampas. Field Crops Research, 162, 48–59.CrossRefGoogle Scholar
  29. Mukherjee, A. (2015). Evaluation of the policy of crop diversification as a strategy for reduction of rural poverty in India. Poverty Reduction Policies and Practices in Developing Asia, Chapter, 7, 125–143.Google Scholar
  30. Nishida, M. (2016). Decline in fertility of paddy soils induced by paddy rice and upland soybean rotation, and measures against the decline. Japan Agricultural Research Quarterly, 50(2), 87–94.CrossRefGoogle Scholar
  31. Nishida, M., Sekiya, H., & Yoshida, K. (2013). Status of paddy soils as affected by paddy rice and upland soybean rotation in Northeast Japan, with special reference to nitrogen fertility. Soil Science and Plant Nutrition, 59(2), 208–217.CrossRefGoogle Scholar
  32. Novelli, L. E., Caviglia, O. P., & Melchiori, R. J. M. (2011). Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma, 167–168, 254–260.CrossRefGoogle Scholar
  33. Novelli, L. E., Caviglia, O. P., Wilson, M. G., & Sasal, M. C. (2013). Land use intensity and cropping sequence effects on aggregate stability and C storage in a vertisol and a Mollisol. Geoderma, 195–196, 260–267.CrossRefGoogle Scholar
  34. Oesterheld, M. (2008). Impacto de la agricultura sobre los ecosistemas. Fundamentos ecológicos y problemas más relevantes. Ecologia Austral, 18, 337–346.Google Scholar
  35. Ongley, E. D. (1996). Control of water pollution from agriculture. FAO Irrigation and Drainage Paper, 55, 37–52. ftp://ftp.fao.org/agl/aglw/docs/idp55e.pdf
  36. Pal, S., & Kar, S. (2012). Implications of the methods of agricultural diversification in reference with Malda District: drawback and rationale. International Journal of Food, Agriculture and Veterinary Sciences, 2(2), 97–105.Google Scholar
  37. Paruelo, J. M., Guerschman, J. P., Piñeiro, G., Jobbágy, E. G., Verón, S. R., Baldi, G., & Baeza, S. (2006). Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. Agrociencia, 10(2), 47–61.Google Scholar
  38. Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Cordoba city (Argentina) on Suquia River. Water Research, 34(11), 2915–2926.CrossRefGoogle Scholar
  39. Pittelkow, C. M., Zorrilla, G., Terra, J., Riccetto, S., Macedo, I., Bonilla, C., & Roel, A. (2016). Sustainability of rice intensification in Uruguay from 1993 to 2013. Global Food Security, 9, 10–18.CrossRefGoogle Scholar
  40. Ray, S., Bari, S., & Shuvro, S. (2015). Assessment of water quality of Goalichara : a water quality index based approach. ARPN Journal of Science and Technology, 5(7), 336–340.Google Scholar
  41. Sande, P., Mirás, J. M., Vidal, E., & Paz, A. (2005). Formas de fósforo y su relación con la erosión en aguas superficiales bajo clima atlántico. Estudios de la zona no saturada del suelo, VII, 125–130.Google Scholar
  42. Sharpley, A. (1995). Identifying sites vulnerable to phosphorus loss in agricultural runoff. Journal of Environment Quality, 24, 947–951.CrossRefGoogle Scholar
  43. Strahler, A. N. (1986). Geografía Física. Omega.Google Scholar
  44. Studdert, G. A., & Echeverría, H. E. (2000). Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of America Journal, 64, 1496–1503.CrossRefGoogle Scholar
  45. Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2013). Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3), 34–38.Google Scholar
  46. Van Opstal, N. V., Caviglia, O. P., & Melchiori, R. J. M. (2011). Water and solar radiation productivity of double-crops in a humid temperate area. Australian Journal of Crop Science, 5(13), 1760–1766.Google Scholar
  47. Viglizzo, E. F., Lértora, F., Pordomingo, A. J., Bernardos, J. N., Roberto, Z. E., & Del Valle, H. (2001). Ecological lessons and application from one century of low external-input farming in the pampas of Argentina. Agriculture Ecosystems. and Environment, 83, 65–81.CrossRefGoogle Scholar
  48. Withers, P. J., Neal, C., Jarvie, H. P., & Doody, D. G. (2014). Agriculture and eutrophication: where do we go from here? Sustainability (Switzerland), 6, 5853–5875.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ecology and Environmental Sciences InstituteSciences School (de la Republica University)MontevideoUruguay
  2. 2.National Agricultural Research Institute (INIA), Experimental Station Wilson Ferreira AldunateCanelonesUruguay
  3. 3.Los Tordos S en C. Rambla B. Brum 2819MontevideoUruguay

Personalised recommendations