Influence of human-induced pressures on dissolved and particulate metal concentrations in a South American estuary

  • Noelia S. La CollaEmail author
  • Sandra E. Botté
  • Vanesa L. Negrin
  • Analía V. Serra
  • Jorge E. Marcovecchio


Coastal areas are urbanized and industrialized environments, affected by dredging operations, discharges of untreated municipal wastewaters, and farming. Developing countries are in continuous growth and will deal, in a close future, with the highest rate of coastal transformation, posing serious risks for the ecological and environmental value of ecosystem assets. This research aims to study the dissolved and particulate Cr, Ni, Pb and Zn values within an argentinean estuarine environment which is currently under human-induced pressures. Concentrations of all the metals under analyses showed seasonal variability of both dissolved and particulate metals. An important outcome of this study was that dissolved Cr, Pb and Zn attained maximum values and overall increased concentrations with respect to previous records from the same area. Indeed, the highest concentrations were found during the dredging operations or in association with increases in the metal levels from wastewater discharges. The results also indicated that human activities contributed the least to the dissolved Ni concentrations. The particulate fraction of Cr, Ni and Zn showed an upward trend in the concentrations, particularly during the last two sampling dates, being also positively correlated between each other. Regarding their respective environmental quality standards, many samples achieved dissolved Cr and Zn concentrations above the maximum values recommended by international guidelines. Thus, this study highlights the possibility of stressors like dredging activities and municipal wastewaters to cause increases in the water column pollution levels.


Seawater Coastal zones Dredging Physicochemical variables Health risks 



The authors are greatly indebted to F.E. Garcia and M.N. Chiarello for their help in sample collection and analyses. Authors are very grateful to Dr. C. Domini for her valuable collaboration in improving the preconcentration procedure. The assistance of G.S. Gutierrez in sample collection was also appreciated. N. S. La Colla has received a doctoral grant funded by the National Council of Scientific and Technological Research (CONICET-Argentina).


This study was funded through research grants by CONICET (PIP D-738 2011) and by Universidad Nacional del Sur (Secyt-UNS, PGI 24/ZB59).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alquezar, R., Markich, J. S., & Twining, J. R. (2007). Uptake and loss of dissolved 109Cd and 75Se in estuarine macroinvertebrates. Chemosphere, 67, 1202–1210.CrossRefGoogle Scholar
  2. Andrade, S. (2001). Metales pesados en el agua de la zona interna de Bahía Blanca, y su toxicidad sobre algunas especies fitoplanctónicas. PhD Thesis, Universidad Nacional del Sur, Argentina, 244 pp.Google Scholar
  3. Andrade, S., Pucci, A., & Marcovecchio, J. E. (2000). Cadmium concentrations in the Bahía Blanca estuary (Argentina). Potential effects of dissolved cadmium on the diatom Thalassiosira curviseriata. Oceanologia, 42, 505–520.Google Scholar
  4. Angel, B. M., Hales, L. T., Simpson, S. L., Apte, S. C., Chariton, A. A., Shearer, D. A., & Jolley, D. F. (2010). Spatial variability of cadmium, copper, manganese, nickel and zinc in the Port Curtis estuary, Queensland, Australia. Marine Freshwater Research, 61(2), 170–183.CrossRefGoogle Scholar
  5. Anonymous. (2000). Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000, establishing a framework for community action in the field of water policy (water framework directive). Official Journal of European Community, L327, 1–72.Google Scholar
  6. APHA-AWWA-WPCF. (1998). Standard methods for the examination of water and wastewater. En: Clesceri, L.S., Greenberg, A.E., Eaton, A.D. (Eds,), 20th ed. American Public Health Association, Washington.Google Scholar
  7. Beltrame, M. O., De Marco, S. G., & Marcovecchio, J. E. (2009). Dissolved and particulate heavy metals distribution in coastal lagoons. A case study from Mar Chiquita Lagoon, Argentina. Estuarine, Coastals and Shelf Science, 85(1), 45–56.CrossRefGoogle Scholar
  8. Bhattacharya, B. D., Nayak, D. C., Sarkar, S. K., Biswas, S. N., Rakshit, D., & Ahmed, M. K. (2015). Distribution of dissolved trace metals in coastal regions of Indian Sundarban mangrove wetland: a multivariate approach. Journal of Clean Production, 96, 233–243.CrossRefGoogle Scholar
  9. Birch, G., & O’Hea, L. (2007). The chemistry of suspended particulate material in a highly contaminated embayment of Port Jackson (Australia) under quiescent, high-wind and heavy-rainfall conditions. Environmental Geology, 53(3), 501–516.CrossRefGoogle Scholar
  10. Botté, S. E., Freije, R. H., & Marcovecchio, J. E. (2007). Dissolved heavy metal (Cd, Pb, Cr, Ni) concentrations in surface water and porewater from Bahía Blanca estuary tidal flats. Bulletin of Environmental Contamination and Toxicology, 79, 415–421.CrossRefGoogle Scholar
  11. Botté, S. E., Freije, R. H., & Marcovecchio, J. E. (2010). Distribution of several heavy metals in tidal flats sediments within Bahía Blanca estuary (Argentina). Water Air and Soil Pollution, 210, 371–388.CrossRefGoogle Scholar
  12. Botté, S. E., Marcovecchio, J. E., Fernández-Severini, M. D., Negrin, V. L., Panebianco, V., Simonetti, P., Buzzi, N. S., & Delucchi, F. (2013). Ciclo de metales (pp. 227–258). In: Procesos químicos en estuarios, Universidad Tecnológica Nacional.Google Scholar
  13. Burton, G. A. (2002). Sediment quality criteria in use around the world. Limnology, 3(2), 65–76.CrossRefGoogle Scholar
  14. Cabrita, M. T. (2014). Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Portugal). Environmental Pollution, 191, 17–24.CrossRefGoogle Scholar
  15. Caetano, M., Madureira, M. J., & Vale, C. (2003). Metal remobilisation during resuspension of anoxic contaminated sediment: short-term laboratory study. Water Air and Soil Pollution, 143, 23–40.CrossRefGoogle Scholar
  16. Cifuentes, O., Escudero, D., Medus, S., Bohn, A., & Dosso, A. (2011). Estudio de la dinámica (espacial y temporal) de los efluentes líquidos industriales y urbanos en la zona del Polo Petroquímico y área portuaria de Bahía Blanca. Contaminación atmosférica e hídrica en Argentina. Puliefito (Ed). Universidad Tecnológica Nacional, 539–545.Google Scholar
  17. Cifuentes, O., Escudero, D., Bohn, A., & Dosso, A. (2014). Estudio de la dinámica (espacial y temporal) de los efluentes líquidos industriales y urbanos en la zona del Polo Petroquímico y área portuaria de Bahía Blanca. Universidad Tecnológica Nacional, 2011, 165 pp.Google Scholar
  18. Cole, S., Codling, I. D., Parr, W., & Zabel, T. (1999). Guidelines for managing water quality impacts within UK European marine sites. En: Hailey, N. and Burn, (Eds.), UK Marine SAC Project, 449 pp.Google Scholar
  19. Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.pp. 250–257). New York: Wiley.Google Scholar
  20. CTE (Comite Tecnico Ejecutivo). (2003). Programa integral de monitoreo Bahía Blanca.
  21. CTE (Comite Tecnico Ejecutivo). (2011). Programa integral de monitoreo Bahía Blanca.
  22. CTE (Comite Tecnico Ejecutivo). (2012). Programa integral de monitoreo Bahía Blanca.
  23. CTE (Comite Tecnico Ejecutivo). (2013). Programa integral de monitoreo Bahía Blanca.
  24. CTE (Comite Tecnico Ejecutivo). (2014). Programa integral de monitoreo Bahía Blanca.
  25. Cuadrado, D. G., Gomez, E. A., & Ginsberg, S. S. (2005). Tidal and longshore sediment transport associated to a coastal estructure. Estuarine, Coastal and Shelf Science, 62, 291–300.CrossRefGoogle Scholar
  26. De Souza Machado, A. A., Spencer, K., Kloas, W., Toffolon, M., & Zarfl, C. (2016). Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity. Science of the Total Environment, 541, 268–281.CrossRefGoogle Scholar
  27. Diop, C., Dewaelé, D., Diop, M., Touré, A., Cabral, M., Cazier, F., Fall, M., Diouf, A., & Ouddane, B. (2014). Assessment of contamination, distribution and chemical speciation of trace metals in water column in the Dakar coast and the Saint Louis estuary from Senegal, West Africa. Marine Pollution Bulletin, 86(1), 539–546.CrossRefGoogle Scholar
  28. Doig, L. E., & Liber, K. (2007). Nickel speciation in the presence of different sources and fractions of dissolved organic matter. Ecotoxicology and Environmental Safety, 66, 169–177.CrossRefGoogle Scholar
  29. Duarte, B., Silva, G., Costa, J. L., Medeiros, J. P., Azeda, C., Sá, E., Metelo, I., Costa, M. J., & Caçador, I. (2014). Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus estuary, Portugal). Journal of Sea Research, 93, 101–111.CrossRefGoogle Scholar
  30. EPA, U. S. (2000). Guidance for data quality assessment. Practical methods for data analysis. Office of Environmental Information. EPA QA/G-9, QA00 Version Washington. In Dc.Google Scholar
  31. Fernandez Severini, M. D., Botté, S. E., Hoffmeyer, M. S., & Marcovecchio, J. (2011). Lead concentrations in zooplankton, water, and particulate matter of a southwestern Atlantic temperate estuary (Argentina). Archives of Environmental Contamination and Toxicology, 61(2), 243–260.CrossRefGoogle Scholar
  32. Ferrer, L. D., Contardi, E., Andrade, S., Asteasuain, R., Pucci, A. E., & Marcovecchio, J. E. (2000). Environmental cadmium and lead concentrations in the Bahía Blanca estuary (Argentina): potential toxic effects of Cd and Pb on crab larvae. Oceanologia, 43, 493–504.Google Scholar
  33. Ferrer, L. D., Andrade, S., Contardi, E., Asteasuain, R. O., & Marcovecchio, J. E. (2003). Copper and zinc concentrations in Bahía Blanca estuary (Argentina), and their acute lethal effects on larvae of the crab Chasmagnathus granulata. Chemical Speciation and Bioavailability, 15(1), 7–14.CrossRefGoogle Scholar
  34. Freije, R. H., Spetter, C. V., Marcovecchio, J., Popovich, C. A., Botté, S. E., Negrín, V. L., Arias, A., Delucchi, F., & Asteasuain, R. O. (2008). Water chemistry and nutrients of the Bahía Blanca estuary. In J. Baretta & M. Mateus (Eds.), Neves, R (pp. 241–254). Lisboa: Perspectives on integrated coastal zone management in South America.Google Scholar
  35. Gao, X., Zhou, F., Chen, C. T. A., & Xing, Q. (2015). Trace metals in the suspended particulate matter of the Yellow River (Huanghe) estuary: concentrations, potential mobility, contamination assessment and the fluxes into the Bohai Sea. Continental Shelf Research, 104, 25–36.CrossRefGoogle Scholar
  36. Grecco, L. E., Gómez, E. A., Botté, S. E., Marcos, Á. O., Marcovecchio, J. E., & Cuadrado, D. G. (2011). Natural and anthropogenic heavy metals in estuarine cohesive sediments: geochemistry and bioavailability. Ocean Dynamics, 61(2), 285–293.CrossRefGoogle Scholar
  37. Guerra, R., Pasteris, A., & Ponti, M. (2009). Impacts of maintenance channel dredging in a northern Adriatic coastal lagoon. I: Effects on sediment properties, contamination and toxicity. Estuarine, Coastal and Shelf Science, 85, 134–142.CrossRefGoogle Scholar
  38. Guinder, V. A., Popovich, C. A., & Perillo, G. M. E. (2009). Particulate suspended matter concentrations in the Bahía Blanca estuary, Argentina: implication for the development of phytoplankton blooms. Estuarine, Coastal and Shelf Science, 85(1), 157–165.CrossRefGoogle Scholar
  39. Guinder, V. A., Popovich, C. A., & Perillo, G. M. E. (2012). Phytoplankton and physicochemical analysis on the water system of the temperate estuary in South America: Bahía Blanca estuary, Argentina. International Journal of Environmental Research, 6(2), 547–556.Google Scholar
  40. Hedge, L., Knott, A., & Johnston, E. (2009). Dredging related metal bioaccumulation in oysters. Marine Pollution Bulletin, 58, 832–840.CrossRefGoogle Scholar
  41. INDEC. (2010). Instituto Nacional de Estadística y Censos, Argentina.
  42. Jonas, P. J. C., & Millward, G. E. (2010). Metals and nutrients in the Severn estuary and Bristol Channel: contemporary inputs and distributions. Marine Pollution Bulletin, 61(1), 52–67.CrossRefGoogle Scholar
  43. Jones, R. P., & Clarke, J. U. (2005). Analytical chemistry detection limits and the evaluation of dredged sediment, ERDC/TN EEDP-04-36, U.S. Vicksburg, MS: Army Engineer Research and Development Center.Google Scholar
  44. La Colla, N. S., Negrin, V. L., Marcovecchio, J. E., & Botté, S. E. (2015). Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic. Estuarine, Coastal and Shelf Science, 166, 45–55.CrossRefGoogle Scholar
  45. La Colla, N. S., Botté, S. E., Oliva, A. L., & Marcovecchio, J. E. (2017). Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species. Chemosphere, 175, 286–293.CrossRefGoogle Scholar
  46. La Colla, N. S., Botté, S. E., & Marcovecchio, J. E. (2018). Metals in coastal zones impacted with urban and industrial wastes: Insights on the metal accumulation pattern in fish species. Journal of Marine Systems, 181, 53–62.CrossRefGoogle Scholar
  47. Liang, J., Fang, L., Wu, T., & Zhang, X. (2016). Characterization, distribution, and source analysis of metals and polycyclic aromatic hydrocarbons (PAHs) of atmospheric bulk deposition in shanghai, China. Water Air and Soil Pollution, 227, 1–14.CrossRefGoogle Scholar
  48. Limbozzi, F., & Leitào, T. E. (2008). Characterization of Bahía Blanca main existing pressures and their effects on the state indicators for surface and groundwater quality. En: Neves, R., Baretta, J., Mateus, M. (Eds.), Perspectives on integrated coastal zone management in South America, Lisboa, 315–331.Google Scholar
  49. Marcovecchio, J. E., & Freije, R. H. (2004). Efectos de la intervención antrópica sobre sistemas marinos costeros: El estuario de Bahía Blanca. Anales de la Academia Nacional de Ciencias Exactas. Físicas Nat., 56, 115–132.Google Scholar
  50. Marcovecchio, J., Botté, S., Fernandez Severini, M. D., & Delucchi, F. (2010). Geochemical control of heavy metal concentrations and distribution within Bahia Blanca estuary (Argentina). Aquatic Geochemica, 16(2), 251–266.CrossRefGoogle Scholar
  51. Mendiguchía, C., Moreno, C., & García-Vargas, M. (2007). Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere, 69(10), 1509–1517.CrossRefGoogle Scholar
  52. Milazzo, A. D. D., Silva, A. C. M., De Oliveira, D. A. F., & Da Cruz, M. J. M. (2014). The influence of seasonality (dry and rainy) on the bioavailability and bioconcentration of metals in an estuarine zone. Estuarine, Coastal and Shelf Science, 149, 143–150.CrossRefGoogle Scholar
  53. Negrin, V. L., Botté, S. E., Pratolongo, P. D., Trilla, G. G., & Marcovecchio, J. E. (2016). Ecological processes and biogeochemical cycling in salt marshes: synthesis of studies in the Bahía Blanca estuary (Argentina). Hydrobiologia, 774(1), 217–235.CrossRefGoogle Scholar
  54. Pasternack, G. B., & Brown, K. J. (2006). Natural and anthropogenic geochemical signatures of floodplain and deltaic sedimentary strata, Sacramento-San Joaquin Delta, California, USA. Environmental Pollution, 141, 295–309.CrossRefGoogle Scholar
  55. Perillo, G. M. E., & Piccolo, M. C. (1999). Geomorphological and physical characteristics of the Bahía Blanca estuary, Argentina. En: Perillo, G.M.E., Piccolo, M.C., Pino-Quiriva, M. (Eds.), Estuaries of South America. Their geomorphology and dynamics, Berlin, 195–216.Google Scholar
  56. Perillo, G. M., Pierini, J. O., Pérez, D. E., & Gómez, E. A. (2001). Suspended sediment circulation in semi-enclosed docks, Puerto Galván, Argentina. Terra et Aqua, 13–20.Google Scholar
  57. Piccolo, M. C. (2008). Climatological features of the Bahía Blanca estuary. In: Neves, R., Baretta, J., Mateus, M. (Eds.), Perspectives on Integrated Coastal Zone Management in South America, Lisboa, 231–239.Google Scholar
  58. Piccolo, M. C., & Perillo, G. M. (1990). Physical characteristics of the Bahía Blanca estuary (Argentina). Estuarine, Coastal and Shelf Science, 31(3), 303–317.CrossRefGoogle Scholar
  59. Piccolo, M. C., Perillo, G. M. E., & Melo, W. D. (2008). The Bahía Blanca estuary: an integrated overview of its geomorphology and dynamics. En: Neves, R., Baretta, J., Mateus, M. (Eds.), Perspectives on integrated coastal zone management in South America, Lisboa, 219–229.Google Scholar
  60. Sadiq, M. (1992). Toxic metal chemistry in marine environments. New Yor: Marcel Dekker 390 pp.Google Scholar
  61. Schnegelberger, M. A. (2014). Dragado de profundización del canal interior y antepuerto de los puertos Ingeniero White y Galván y ensanchamiento de su canal de vinculación. Buenos aires, Argentina: En: Resúmenes del VIII Congreso argentino de ingeniería portuaria.Google Scholar
  62. Serra, A. V., Botté, S. E., Cuadrado, D. G., La Colla, N. S., & Negrin, V. L. (2017). Metals in tidal flats colonized by microbial mats within a south-American estuary (Argentina). Environmental Earth Science, 76(6), 254.CrossRefGoogle Scholar
  63. Simonetti, P., Botté, S. E., Fiori, S. M., & Marcovecchio, J. E. (2013). Burrowing crab (Neohelice granulata) as a potential bioindicator of heavy metals in the Bahía Blanca estuary, Argentina. Archives of Environmental Contamination and Toxicology, 64(1), 110–118.CrossRefGoogle Scholar
  64. Simonetti, P., Botté, S. E., & Marcovecchio, J. E. (2017). Occurrence and spatial distribution of metals in intertidal sediments of a temperate estuarine system (Bahía Blanca, Argentina). Environmental Earth Science, 76(18), 636.CrossRefGoogle Scholar
  65. Sznaiberg, L. (2012). Parques Industriales: Luz verde para producir futuro. Revista Informe Industrial N_ 233.
  66. Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: a review with a focus on European seas. Marine Pollution Bulletin, 112(1–2), 17–38.CrossRefGoogle Scholar
  67. Vale, C., Ferreira, M., Micaelo, C., Caetano, M., Pereira, E., Madureira, M. J., & Ramalhosa, E. (1998). Mobility of contaminants in relation to dredging operations in a mesotidal estuary (Tagus estuary, Portugal). Water Science and Technology, 37(6–7), 25–31.CrossRefGoogle Scholar
  68. Van Ael, E., Blust, R., & Bervoets, L. (2017). Metals in the Scheldt estuary: from environmental concentrations to bioaccumulation. Environmental Pollution, 228, 82–91.CrossRefGoogle Scholar
  69. Verdonschot, P. F. M., Spears, B. M., Feld, C. K., Brucet, S., Keizer-Vlek, H., Borja, A., Elliott, M., Kernan, M., & Johnson, R. K. (2013). A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia, 704(1), 453–474.CrossRefGoogle Scholar
  70. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  71. Yao, Q., Wang, X., Jian, H., Chen, H., & Yu, Z. (2016). Behavior of suspended particles in the Changjiang estuary: size distribution and trace metal contamination. Marine Pollution Bulletin, 103(1), 159–167.CrossRefGoogle Scholar
  72. Yin, S., Feng, C., Li, Y., Yin, L., & Shen, Z. (2015). Heavy metal pollution in the surface water of the Yangtze estuary: A 5-year follow-up study. Chemosphere, 138, 718–725.CrossRefGoogle Scholar
  73. Zar, J. H. (1996). Biostatistical analysis (third ed.). New Jersey, USA: Prentice Hall.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Noelia S. La Colla
    • 1
    Email author
  • Sandra E. Botté
    • 1
    • 2
  • Vanesa L. Negrin
    • 1
    • 2
  • Analía V. Serra
    • 1
  • Jorge E. Marcovecchio
    • 1
    • 3
    • 4
  1. 1.Instituto Argentino de Oceanografía (IADO – CONICET/UNS)Bahía BlancaArgentina
  2. 2.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
  3. 3.Universidad de la Fraternidad de Agrupaciones Santo Tomás de AquinoMar del PlataArgentina
  4. 4.Universidad Tecnológica Nacional – FRBBBahía BlancaArgentina

Personalised recommendations