Advertisement

Silver near municipal wastewater discharges into western Lake Ontario, Canada

  • Chris D. Metcalfe
  • Tamanna Sultana
  • Jonathan Martin
  • Karla Newman
  • Paul Helm
  • Sonya Kleywegt
  • Li Shen
  • Viviane Yargeau
Article
  • 79 Downloads

Abstract

Because of the widespread use of silver nanoparticles in commercial products, discharges of municipal wastewater may be a point source of silver in the aquatic environment. We monitored two sites in western Lake Ontario impacted by discharges from wastewater treatment plants serving the City of Toronto. Concentrations of silver were elevated in bottom sediments and suspended sediments collected at the two sites. We also deployed two types of passive samplers in the water column at the two sites, the newly developed Carbon Nanotube Integrative Samplers for monitoring “CNIS-labile” silver and Diffusive Gradient in Thin Film samplers for monitoring “DGT-labile” silver. Results from these passive samplers indicated that the concentrations of silver at the two sites were either below detection limits or were in the ng/L range. In laboratory experiments where the sediments were re-suspended in Milli-Q water, a small proportion of the silver (i.e., < 25%) was labile and partitioned as colloidal or dissolved silver into the liquid phase after agitation. Nanoparticles tentatively identified as silver nanoparticles were detected by single-particle ICP-MS in suspension after agitation of both suspended and bottom sediments. Therefore, there is a need to assess whether silver species, including silver nanoparticles are transported from wastewater treatment plants into sediments in the aquatic environment. This study is unique in focusing on the in situ distribution of silver in natural waters and in sediments that are potentially impacted by urban sources of nanoparticles.

Keywords

Silver Nanosilver Sediments Wastewater Passive sampler Single-particle ICP-MS 

Notes

Acknowledgements

We thank Brenda Seaborn for her contribution to the project. We also thank field staff of the Great Lakes Unit, OMECC, for the deployment of passive samplers and collections of bed and suspended sediment.

Funding

This project received funding support from the Government of Ontario. Such support does not indicate endorsement by the Government of Ontario of the contents of this contribution.

References

  1. Adegboyega, N. F., Sharma, V. K., Siskova, K., Zbořil, R., Sohn, M., Schultz, B. J., & Banerjee, S. (2013). Interactions of aqueous ag+ with fulvic acids: Mechanisms of silver nanoparticle formation and investigation of stability. Environmental Science & Technology, 47, 757–764.CrossRefGoogle Scholar
  2. Akaighe, N., MacCuspie, R. I., Navarro, D. A., Aga, D. S., Banerjee, S., Sohn, M., & Sharma, V. K. (2011). Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environmental Science & Technology, 45, 3895–3901.CrossRefGoogle Scholar
  3. Azodi, M., Sultan, Y., & Ghoshad, S. (2016). Dissolution behavior of silver nanoparticles and formation of secondary silver nanoparticles in municipal wastewater by single-particle ICP-MS. Environmental Science & Technology, 50, 13318–13327.CrossRefGoogle Scholar
  4. Balch, J., & Guéguen, C. (2015). Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances. Chemosphere, 119, 498–503.CrossRefGoogle Scholar
  5. Brunetti, G., Donner, E., Laera, G., Sekine, R., Scheckel, K. G., Khaksar, M., Vasilev, K., De Mastro, G., & Lombi, E. (2015). Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Research, 77, 72–84.CrossRefGoogle Scholar
  6. Coynel, A., Gorse, L., Curti, C., Schafer, J., Grosbois, C., Morelli, G., Ducassou, E., Blanc, G., Maillet, G. M., & Mohtahid, M. (2016). Spatial distribution of trace elements in the surface sediments of a major European estuary (Loire estuary, France): Source identification and evaluation of anthropogenic contribution. Journal of Sea Research, 118, 77–91.CrossRefGoogle Scholar
  7. Cuartero, M., & Bakker, E. (2017). Review article. Environmental water analysis with membrane electrodes. Curr. Opin. Electrochem., 3, 97–105.Google Scholar
  8. Dale, A. L., Lowry, G. V., & Casman, E. A. (2013). Modeling nanosilver transformations in freshwater sediments. Environmental Science & Technology, 47, 12920–12928.CrossRefGoogle Scholar
  9. Dumont, E., Johnson, A. C., Keller, V. D. J., & Williams, R. J. (2015). Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution. Environ Poll, 196, 341–349.CrossRefGoogle Scholar
  10. Flegal, A. R., Brown, C. I., Squire, S., Ross, J. R. M., Scelfo, G. M., & Hibdon, S. (2007). Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. Environmental Research, 105, 34–52.CrossRefGoogle Scholar
  11. Furtado, L. M., Bundschuh, M., & Metcalfe, C. D. (2016). Monitoring the fate and transformation of silver nanoparticles in natural waters. Bulletin of Environmental Contamination and Toxicology, 97, 449–455.CrossRefGoogle Scholar
  12. Furtado, L. M., Cheever, B., Xenopoulus, M. A., Frost, P. C., Metcalfe, C. D., & Hintelmann, H. (2015). Environmental fate of silver nanoparticles in boreal lake ecosystems. Environmental Science & Technology, 49, 8441–8450.CrossRefGoogle Scholar
  13. Furtado, L. M., Hoque, M. E., Mitrano, D. F., Ranville, J. F., Cheever, B., Frost, P. C., Xenopoulos, M. A., Hintelmann, H., & Metcalfe, C. D. (2014). The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques. Environment and Chemistry, 11, 419–430.CrossRefGoogle Scholar
  14. Gottschalk, F., Sun, T. Y., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Poll., 181, 287–300.CrossRefGoogle Scholar
  15. Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, ag, CNT, fullerenes) for different regions. Environmental Science & Technology, 43, 9216–9222.CrossRefGoogle Scholar
  16. Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., Hagendorfer, H., Elumelu, M., & Mueller, E. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Research, 47, 3866–3877.CrossRefGoogle Scholar
  17. Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15, 1–17.CrossRefGoogle Scholar
  18. Khaksar, M., Jolley, D. F., Sekine, R., Vasilev, K., Johannessen, B., Donner, E., & Lombi, E. (2015). In situ chemical transformations of silver nanoparticles along the water-sediment continuum. Environmental Science & Technology, 49, 319–325.CrossRefGoogle Scholar
  19. Kim, B., Park, C. S., Murayama, M., & Hochella, M. F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science & Technology, 44, 7509–7515.CrossRefGoogle Scholar
  20. Li, J., Hartmann, G., Doblinger, M., & Schuster, M. (2013). Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environmental Science & Technology, 47, 7317–7323.CrossRefGoogle Scholar
  21. Lowry, G. V., Espinasse, B. P., Badireddy, A. R., Richardson, C. J., Reinsch, B. C., Bryant, L. D., Bone, A. J., Deonarine, A., Chae, S., & Therezien, M. (2012a). Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environmental Science & Technology, 46, 7027–7036.CrossRefGoogle Scholar
  22. Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012b). Transformations of nanoparticles in the environment. Environmental Science & Technology, 46, 6893–6899.CrossRefGoogle Scholar
  23. Lu, Y., Liang, X., Niyungeko, C., Zhou, J., Xu, J., & Tian, G. (2018). A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta, 178, 324–338.CrossRefGoogle Scholar
  24. Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., Jefferson, B., & Lowry, G. V. (2013). Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science & Technology, 48, 104–112.CrossRefGoogle Scholar
  25. Massarsky, A., Trudeau, V. L., & Moon, T. W. (2014). Predicting the environmental impact of nanosilver. Environmental Toxicology and Pharmacology, 38, 861–873.CrossRefGoogle Scholar
  26. McGillicuddy, E., Murray, I., Kavanagh, S., Morrisson, I., Fogarty, A., Cormican, M., Dockery, P., Prendergast, M., Rowan, N., & Morris, D. (2017). Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ., 575, 231–246.CrossRefGoogle Scholar
  27. Newman, K., Metcalfe, C. D., Martin, J., Hintelman, H., Shaw, P., & Donard, A. (2016). Improved single particle ICP-MS characterization of silver nanoparticles at environmentally relevant concentrations. Journal of Analytical Atomic Spectrometry, 31, 2069–2077.CrossRefGoogle Scholar
  28. Nowack, B., Ranville, J., Diamond, S., Gallego-Urrea, J., Metcalfe, C., Rose, J., Horne, A., & Koelmans AA Klaine, S. J. (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 31, 50–59.CrossRefGoogle Scholar
  29. Peijnenburg, W. J. G. M., Baalousha, M., Chen, J., Chaudry, Q., Von Der Kammer, F., Kuhlbusch, T. A. J., Lead, J., Nickel, C., Quik, J. T. K., Renker, M., Wang, Z., & Koelmans, A. A. (2015). A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Critical Reviews in Environmental Science and Technology, 45, 2084–2134.CrossRefGoogle Scholar
  30. Rajala, J. E., Vehniainen, E.-R., Vaisenan, A., & Kukkonen, J. V. K. (2017). Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments. Environmental Toxicology and Chemistry, 36, 2593–2601.CrossRefGoogle Scholar
  31. Ramskov, T., Forbes, V. E., Gilliland, D., & Selck, H. (2015). Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates. Aquatic Toxicol., 166, 96–105.CrossRefGoogle Scholar
  32. Sañudo-Wilhelmy, S. A., & Flegal, A. R. (1992). Anthropogenic silver in the Southern California bight: A tracer of sewage in coastal waters. Environmental Science & Technology, 26, 2147–2151.CrossRefGoogle Scholar
  33. Shafer, M. M., Overdier, J. T., & Armstrong, D. E. (1998). Removal, partitioning and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environmental Toxicology and Chemistry, 17, 630–641.CrossRefGoogle Scholar
  34. Shen, L., Fischer, J., Martin, J., Hoque, M. E., Telgmann, L., Hintelmann, H., Metcalfe, C. D., & Yargeau, V. (2016). Carbon nanotube integrative sampler (CNIS) for passive sampling of nanosilver in the aquatic environment. Sci. Total Environ., 569-570, 223–233.CrossRefGoogle Scholar
  35. Skoglund, S., Lowe, T. A., Hedberg, J., Blomberg, E., Odnevall Wallinder, I., Wold, S., & Lundin, W. (2013). Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. Langmuir, 29, 8882–8891.CrossRefGoogle Scholar
  36. Sun, T. Y., Gottschalk, F., Hungerbühler, K., & Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Poll., 185, 69–76.CrossRefGoogle Scholar
  37. Tappin, A. D., Barriada, J. L., Braungardt, C. B., Evans, E. H., Patey, M. D., & Achterberg, E. P. (2010). Dissolved silver in European estuarine and coastal waters. Water Research, 44, 4204–4216.CrossRefGoogle Scholar
  38. Telgmann, L., Nguyen, T. K., Shen, L., Yargeau, V., & Metcalfe, C. D. (2016). Single particle ICP-MS as a tool for determining the stability of silver nanoparticles in aquatic matrixes under various environmental conditions, including treatment by ozonation. Analytical and Bioanalytical Chemistry, 408, 5169–5177.CrossRefGoogle Scholar
  39. Unrine, J. M., Colman, B. P., Bone, A. J., Gondikas, A. P., & Matson, C. W. (2012). Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of ag nanoparticles. Part 1. Aggregation and dissolution. Environmental Science & Technology, 46, 6915–6924.CrossRefGoogle Scholar
  40. Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr., M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780.CrossRefGoogle Scholar
  41. Van Koetsem, F., Tilahun Geremew, T., Wallaert, E., Verbeken, K., Van de Meeren, P., & Du Laing, G. (2015). Fate of engineered nanomaterials in surface waters: Factors affecting interactions of ag and CeO2 nanoparticles with (re) suspended sediments. Ecological Engineering, 80, 140–150.CrossRefGoogle Scholar
  42. Velzeboer, I., Quik, J. T. K., van de Meent, D., & Koelman, A. A. (2014). Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environmental Toxicology and Chemistry, 33, 1766–1773.CrossRefGoogle Scholar
  43. Wenigner JM. (1988). Sediment and pollutant accumulation in the Humber River marsh, Toronto. Ontario Ministry of the Environment, ISBN 0-7729-4653-1, 54 p.Google Scholar
  44. Yurong, C. A. (2010). Using frontal affinity chromatography to study how silver binds with particulates. Chinese Journal of Geochemistry, 29, 242–245.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Chris D. Metcalfe
    • 1
  • Tamanna Sultana
    • 1
  • Jonathan Martin
    • 1
  • Karla Newman
    • 1
  • Paul Helm
    • 2
  • Sonya Kleywegt
    • 2
  • Li Shen
    • 3
  • Viviane Yargeau
    • 3
  1. 1.Water Quality CentreTrent UniversityPeterboroughCanada
  2. 2.Ontario Ministry of Environment and Climate ChangeTorontoCanada
  3. 3.Department of Chemical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations