Advertisement

Modeling of an activated sludge process for effluent prediction—a comparative study using ANFIS and GLM regression

  • Dauda Olurotimi Araromi
  • Olukayode Titus Majekodunmi
  • Jamiu Adetayo Adeniran
  • Taofeeq Olalekan Salawudeen
Article
  • 182 Downloads

Abstract

In this paper, nonlinear system identification of the activated sludge process in an industrial wastewater treatment plant was completed using adaptive neuro-fuzzy inference system (ANFIS) and generalized linear model (GLM) regression. Predictive models of the effluent chemical and 5-day biochemical oxygen demands were developed from measured past inputs and outputs. From a set of candidates, least absolute shrinkage and selection operator (LASSO), and a fuzzy brute-force search were utilized in selecting the best combination of regressors for the GLMs and ANFIS models respectively. Root mean square error (RMSE) and Pearson’s correlation coefficient (R-value) served as metrics in assessing the predicting performance of the models. Contrasted with the GLM predictions, the obtained modeling results show that the ANFIS models provide better predictions of the studied effluent variables. The results of the empirical search for the dominant regressors indicate the models have an enormous potential in the estimation of the time lag before a desired effluent quality can be realized, and preempting process disturbances. Hence, the models can be used in developing a software tool that will facilitate the effective management of the treatment operation.

Keywords

Wastewater treatment process modeling Predictive models ANFIS Fuzzy exhaustive search GLM regression LASSO regularization 

Notes

Acknowledgements

The authors would like to acknowledge the support of Seven-Up Bottling Company, Lagos, Nigeria for releasing the data used.

References

  1. Ahmadi, A., Fatemi, Z., & Nazari, S. (2018). Assessment of input data selection methods for BOD simulation using data-driven models: a case study. Environmental Monitoring and Assessment, 190, 239.  https://doi.org/10.1007/s10661-018-6608-4.CrossRefGoogle Scholar
  2. Araromi, D. O., Sonibare, J. A., & Emuoyibofarhe, J. O. (2014). Fuzzy identification of reactive distillation for acetic acid recovery from wastewater. Journal of Environmental Chemical Engineering, 2, 1394–1403.  https://doi.org/10.1016/j.jece.2014.05.008.CrossRefGoogle Scholar
  3. Belanche, L. A., Valde, J. J., Comas, J., Roda, I. R., & Poch, M. (1999). Towards a model of input–output behaviour of wastewater treatment plants using soft computing techniques. Environmental Modelling & Software, 14, 409–419.  https://doi.org/10.1016/S1364-8152(98)00102-9.CrossRefGoogle Scholar
  4. Belanche, L., Valde, J. J., Comas, J., Roda, I. R., & Poch, M. (2000). Prediction of the bulking phenomenon in wastewater treatment plants. Artificial Intelligence in Engineering, 14, 307–317.  https://doi.org/10.1016/S0954-1810(00)00012-1.CrossRefGoogle Scholar
  5. Cristea, V., Pop, C., & Agachi, P. S. (2009). Artificial neural networks modelling of PID and model predictive controlled wastewater treatment plant based on the benchmark simulation model no. 1. Computers & Chemical Engineering.  https://doi.org/10.1016/S1570-7946(09)70197-X.Google Scholar
  6. Dupuit, E., Pouet, M. F., Thomas, O., & Bourgois, J. (2007). Decision support methodology using rule-based reasoning coupled to non-parametric measurement for industrial wastewater network management. Environmental Modelling & Software, 22, 1153–1163.  https://doi.org/10.1016/j.envsoft.2006.05.025.CrossRefGoogle Scholar
  7. Dürrenmatt, D. J., & Gujer, W. (2012). Data-driven modeling approaches to support wastewater treatment plant operation. Environmental Modelling & Software.  https://doi.org/10.1016/j.envsoft.2011.11.007.
  8. El-Din, A. G., & Smith, D. W. (2002). A neural network model to predict the wastewater inflow incorporating rainfall events. Water Research, 36, 1115–1126.  https://doi.org/10.1016/S0043-1354(01)00287-1.CrossRefGoogle Scholar
  9. Gernaey, K. V., van Loosdrecht, M., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 19, 763–783.  https://doi.org/10.1016/j.envsoft.2003.03.005.CrossRefGoogle Scholar
  10. Gontarski, C. A., Rodrigues, P. R., Mori, M., & Prenem, L. F. (2000). Simulation of an industrial wastewater treatment plant using artificial neural networks. Computers & Chemical Engineering, 24, 1719–1723.  https://doi.org/10.1016/S0098-1354(00)00449-X.CrossRefGoogle Scholar
  11. Guillaume, S. (2001). Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Transactions on Fuzzy Systems, 9, 426–443.  https://doi.org/10.1109/91.928739.CrossRefGoogle Scholar
  12. Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19, 919–928.  https://doi.org/10.1016/j.envsoft.2003.10.005.CrossRefGoogle Scholar
  13. Hardin, J.W. & Hilbe, J.M. (2007). Generalized linear models and extensions. Texas: Stata Press.Google Scholar
  14. Heddam, S., Lamda, H., & Filali, S. (2016). Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study. Environmental Processes, 3, 153–165.  https://doi.org/10.1007/s40710-016-0129-3.CrossRefGoogle Scholar
  15. Jablonski, A., Barszcz, T., Bielecka, M., & Breuhaus, P. (2013). Modeling of probability distribution functions for automatic threshold calculation in condition monitoring systems. Measurement, 46, 727–738.  https://doi.org/10.1016/j.measurement.2012.09.011.CrossRefGoogle Scholar
  16. Jang, J.-S. R. (1993). ANFIS—adaptive network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.  https://doi.org/10.1109/21.256541.CrossRefGoogle Scholar
  17. Jang, J.-S. R., & Sun, C.-T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83, 378–406.  https://doi.org/10.1109/5.364486.CrossRefGoogle Scholar
  18. Karray, F. O., & De Silva, C. W. (2004). Soft computing and intelligent systems design: theory, tools and applications. England: Pearson Education.Google Scholar
  19. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. New York: Chapman & Hall.CrossRefGoogle Scholar
  20. Mingzhi, H., Jinquan, W., Yongwen, M., Yan, W., Weijiang, L., & Xiaofei, S. (2009). Control rules of aeration in a submerged bio-film wastewater treatment process using fuzzy neural networks. Expert Systems with Applications, 36, 10428–10437.  https://doi.org/10.1016/j.eswa.2009.01.035.CrossRefGoogle Scholar
  21. Mjalli, F. S., Al-Asheh, S., & Alfadala, H. E. (2007). Use of artificial neural network black-box modeling for the prediction wastewater treatment plants performance. Journal of Environmental Management, 83, 329–338.  https://doi.org/10.1016/j.jenvman.2006.03.004.CrossRefGoogle Scholar
  22. Moral, H., Aksoy, A., & Gokcay, C. F. (2008). Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Computers & Chemical Engineering, 32, 2471–2478.  https://doi.org/10.1016/j.compchemeng.2008.01.008.CrossRefGoogle Scholar
  23. Nadiri, A. A., Shokri, S., Tsai, F. T. C., & Moghaddam, A. A. (2018). Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model. Journal of Cleaner Production, 180, 539–549.  https://doi.org/10.1016/j.jclepro.2018.01.139.CrossRefGoogle Scholar
  24. Nasr, M. S., Moustafa, M. A., Seif, H. A., & El Kobrosy, G. (2012). Application of artificial neural network (ANN) for the prediction of El-Agamy wastewater treatment plant performance—Egypt. Alexandria Engineering Journal, 51, 37–43.  https://doi.org/10.1016/j.aej.2012.07.005.CrossRefGoogle Scholar
  25. Oke, E.O., Jimoda, L.A., & Araromi, D.O. (2017). Determination of biocoagulant dosage for water clarification using developed neuro-fuzzy network integrated with user interface based calculator. Water Science and Technology: Water Supply, ws2017241,  https://doi.org/10.2166/ws.2017.241.
  26. Oliveira-Esquerre, K. P., Mori, M., & Bruns, R. E. (2002). Simulation of an industrial wastewater treatment plant using artificial neural networks and principal component analysis. Brazilian Journal of Chemical Engineering, 19, 365–370.  https://doi.org/10.1590/S0104-66322002000400002.CrossRefGoogle Scholar
  27. Pai, T. Y., Wan, T. J., Hsu, S. T., Chang, T. C., Tsai, Y. P., Lin, C. Y., Su, H. C., & Yu, L. F. (2009). Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent. Computers & Chemical Engineering, 33, 1272–1278.  https://doi.org/10.1016/j.compchemeng.2009.02.004.CrossRefGoogle Scholar
  28. Pai, T. Y., Yang, P. Y., Wang, S. C., Lo, M. H., Chiang, C. F., Kuo, J. L., Chu, H. H., Su, H. C., Yu, L. F., Hu, H. C., & Chang, Y. H. (2011). Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality. Applied Mathematical Modelling, 35, 3674–3684.  https://doi.org/10.1016/j.apm.2011.01.019.CrossRefGoogle Scholar
  29. Passino, K. M., & Yurkovich, S. (1998). Fuzzy control. California: Addison-Wesley Longman.Google Scholar
  30. Pons, M. N., Spanjers, H., & Jeppsson, U. (1999). Towards a benchmark for evaluating control strategies in wastewater treatment plants by simulation. Computers & Chemical Engineering, 23, S403–S406.  https://doi.org/10.1016/S0098-1354(99)80099-4.CrossRefGoogle Scholar
  31. Rustum, R., & Adeloye, A. J. (2007). Replacing outliers and missing values from activated sludge data using Kohonen self-organizing map. Journal of Environmental Engineering, 133, 909–916.  https://doi.org/10.1061/(ASCE)0733-9372(2007)133:9(909).CrossRefGoogle Scholar
  32. Singh, K. P., Basant, N., Malik, A., & Jain, G. (2010). Modeling the performance of “up-flow anaerobic sludge-blanket” reactor based wastewater treatment plant using linear and non-linear approaches—a case study. Analytica Chimica Acta, 658, 1–11.  https://doi.org/10.1016/j.aca.2009.11.001.CrossRefGoogle Scholar
  33. Suh, C. W., Lee, J. W., Hong, Y. S. T., & Shin, H. S. (2009). Sequential modeling of fecal coliform removals in a full-scale activated-sludge wastewater treatment plant using an evolutionary process model induction system. Water Research, 43, 137–147.  https://doi.org/10.1016/j.watres.2008.09.022.CrossRefGoogle Scholar
  34. Tangirala, A. K. (2015). Principles of system identification: theory and practice. Florida: CRC Press.Google Scholar
  35. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.Google Scholar
  36. Tomić, A. Š., Antanasijević, D., Ristić, M., Perić-Grujić, A., & Pocajt, V. (2018). A linear and non-linear polynomial neural network modeling of dissolved oxygen content in surface water: inter- and extrapolation performance with inputs’ significance analysis. Science of the Total Environment, 610-611, 1038–1046.  https://doi.org/10.1016/j.scitotenv.2017.08.192.CrossRefGoogle Scholar
  37. Yel, E., & Yalpir, S. (2011). Prediction of primary treatment effluent parameters by fuzzy inference system (FIS) approach. Procedia Computer Science, 3, 659–665.  https://doi.org/10.1016/j.procs.2010.12.110.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringLadoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Department of Chemical EngineeringIzmir Institute of TechnologyIzmirTurkey
  3. 3.Department of Chemical EngineeringUniversity of IlorinIlorinNigeria

Personalised recommendations