Advertisement

Estimating air temperature using MODIS surface temperature images for assessing Aedes aegypti thermal niche in Bangkok, Thailand

  • Renaud Misslin
  • Yvette Vaguet
  • Alain Vaguet
  • Éric Daudé
Article

Abstract

Dengue, the most widespread urban vector-borne disease, is transmitted to human by the mosquito Aedes aegypti. Its distribution in urban areas is heterogeneous over time and space. In time, it is linked to seasonal variations such as warm and cold seasons, as well as rainy and dry seasons. In space, it is linked to social and environmental conditions, which alternate between rich and deprived neighborhoods, vegetated and densely built areas. These variations in terms of land cover can affect surface and air temperature. As a result of its influence on the mosquito’s life cycle, temperature plays a crucial part in dengue epidemics potential. Thus, deciphering the thermal variations effects within cities could lead to the identification of precise thermal comfort zones, favorable to the survival of mosquito populations during inter-epidemic periods. The maps that could be produced as a result would enable health authorities to target specific areas. Most cities are equipped with meteorological stations. However, the network is generally not dense enough to precisely identify thermal comfort zones. Remote sensing can be used as a tool to solve this issue. The methodological objective of this paper is to assess the potential of the TVX (Temperature-Vegetation indeX) approach applied to MODIS thermal images for the purpose of estimating daily minimum and maximum air temperatures in the city of Bangkok, Thailand. The TVX approach has been seldom used over urban areas due to the heterogeneous nature of cities in terms of land cover. However, our study shows that in vegetated cities such as Bangkok, the TVX method provides valuable results which can be used to assess thermal niche of A. aegypti.

Keywords

MODIS Air temperature TVX algorithm Aedes aegypti Dengue Zika 

Notes

Funding information

The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP7/2007-2013) for the DENFREE Project under Grant Agreement No. 282 378. The funding source had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript.

References

  1. Araujo, R.V., Albertini, M.R., Costa-da Silva, A.L., Suesdek, L., Franceschi, N.C.S., Bastos, N.M., Katz, G., Cardoso, V.A., Castro, B.C., Capurro, M.L., Allegro, V.L.A.C. (2015). São Paulo urban heat islands have a higher incidence of dengue than other urban areas. The Brazilian Journal of Infectious Diseases, 19(2), 146–155.  https://doi.org/10.1016/j.bjid.2014.10.004.CrossRefGoogle Scholar
  2. Azevedo, T.S., Bourke, B.P., Piovezan, R., Sallum, M.A.M. (2018). The influence of urban heat islands and socioeconomic factors on the spatial distribution of aedes aegypti larval habitats. Geospatial health, 13, 1.Google Scholar
  3. Barrera, R., Amador, M., MacKay, A.J. (2011). Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Neglected Tropical Diseases, 5 (12), e1378.  https://doi.org/10.1371/journal.pntd.0001378.CrossRefGoogle Scholar
  4. Benali, A., Carvalho, A., Nunes, J., Carvalhais, N., Santos, A. (2012). Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108–121. https://doi.org/10.1016/j.rse.2012.04.024.CrossRefGoogle Scholar
  5. Brady, O.J., Johansson, M.A., Guerra, C.A., Bhatt, S., Golding, N., Pigott, D.M., Delatte, H., Grech, M.G., Leisnham, P.T., Maciel-de Freitas, R., et al. (2013). Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites & Vectors, 6(1), 1. https://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-6-351.CrossRefGoogle Scholar
  6. Brady, O.J., Golding, N., Pigott, D.M., Kraemer, M.U., Messina, J.P., Reiner, R.C., Scott, T.W., Smith, D.L., Gething, P.W., Hay, S.I. (2014). Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites & vectors, 7(1), 1. http://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-7-338.CrossRefGoogle Scholar
  7. Chen, F., Liu, Y., Liu, Q., Qin, F. (2015). A statistical method based on remote sensing for the estimation of air temperature in china: an estimation method of air temperature based on remote sensing. International Journal of Climatology, 35(8), 2131–2143.  https://doi.org/10.1002/joc.4113.CrossRefGoogle Scholar
  8. Christophers, S.R. (1960). Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press.Google Scholar
  9. Daudé, E, Vaguet, A., Paul, R. (2015). La dengue, maladie complexe. Natures Sciences Sociétés, 23(4), 331–342.  https://doi.org/10.1051/nss/2015058.CrossRefGoogle Scholar
  10. Dousset, B. (1989). Avhrr-derived cloudiness and surface temperature patterns over the Los Angeles area and their relationships to land use. In Proceedings of IGARSS-91 (Vol. 4).  https://doi.org/10.1109/IGARSS.1989.577798.
  11. Emamifar, S., Rahimikhoob, A., Noroozi, A.A. (2013). Daily mean air temperature estimation from MODIS land surface temperature products based on M5 model tree: daily mean air temperature estimation from modis. International Journal of Climatology, 33(15), 3174–3181. http://doi.wiley.com/10.1002/joc.3655.CrossRefGoogle Scholar
  12. Fuller, R.A., & Gaston, K.J. (2009). The scaling of green space coverage in European cities. Biology Letters, 5(3), 352–355.  https://doi.org/10.1098/rsbl.2009.0010.CrossRefGoogle Scholar
  13. Gill, S., Handley, J., Ennos, A., Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure. Buit Environment, 33(1), 115–133.  https://doi.org/10.2148/benv.33.1.115.Google Scholar
  14. Ho, H.C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., Henderson, S.B. (2014). Mapping maximum urban air temperature on hot summer days. Remote Sensing of Environment, 154, 38–45.  https://doi.org/10.1016/j.rse.2014.08.012. http://linkinghub.elsevier.com/retrieve/pii/S0034425714003095.CrossRefGoogle Scholar
  15. Ibarra, A.M.S., Ryan, S.J., Beltrán, E, Mejía, R, Silva, M., Muñoz, n. (2013). Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in ecuador: implications for targeted control. PLoS ONE, 8(11), e78,263.  https://doi.org/10.1371/journal.pone.0078263.CrossRefGoogle Scholar
  16. Kloog, I., Nordio, F., Coull, B.A., Schwartz, J. (2014). Predicting spatiotemporal mean air temperature using MODIS satellite surface temperature measurements across the Northeastern USA. Remote Sensing of Environment, 150, 132–139.  https://doi.org/10.1016/j.rse.2014.04.024. http://linkinghub.elsevier.com/retrieve/pii/S0034425714001758.CrossRefGoogle Scholar
  17. Lambrechts, L., Paaijmans, K., Fansiri, T., Carrington, L., Kramer, L., Thomas, M., Scott, T.W. (2011). Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proceedings of the national academy of sciences of the United States of America PNAS. Proceedings of the National Academy of Sciences, 108(18), 7460–7465. www.pnas.org/cgi/doi/10.1073/pnas.1101377108.CrossRefGoogle Scholar
  18. Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A., Rocklöv, J. (2014). Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS ONE, 9(3), e89,783. http://dx.plos.org/10.1371/journal.pone.0089783.CrossRefGoogle Scholar
  19. Machault, V., Vignolles, C., Pagès, F, Gadiaga, L., Tourre, Y.M., Gaye, A., Sokhna, C., Trape, J.F., Lacaux, J.P., Rogier, C. (2012). Risk mapping of anopheles gambiae s.l. Densities using remotely-sensed environmental and meteorological data in an Urban Area: Dakar, Senegal. PLoS ONE, 7(11), e50,674.  https://doi.org/10.1371/journal.pone.0050674.CrossRefGoogle Scholar
  20. Maneerat, S., & Daudé, E. (2016). A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecological Modelling, 333, 66–78.  https://doi.org/10.1016/j.ecolmodel.2016.04.012 http://linkinghub.elsevier.com/retrieve/pii/S0304380016301387.CrossRefGoogle Scholar
  21. Misslin, R., Telle, O., Daudé, E, Vaguet, A., Paul, R.E. (2016). Urban climate versus global climate change-what makes the difference for dengue?: Climate, dengue, and urban heat islands. Annals of the New York Academy of Sciences, 1382(1), 56–72. http://doi.wiley.com/10.1111/nyas.13084.CrossRefGoogle Scholar
  22. Murdock, C.C., Evans, M.V., McClanahan, T.D., Miazgowicz, K.L., Tesla, B. (2017). Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of aedes albopictus to transmit arboviral disease. PLoS Neglected Tropical Diseases, 11(5), e0005,640.CrossRefGoogle Scholar
  23. Neteler, M., Roiz, D., Rocchini, D., Castellani, C., Rizzoli, A. (2011). Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy. International journal of health geographics, 10(1), 1. http://ij-healthgeographics.biomedcentral.com/articles/10.1186/1476-072X-10-49.CrossRefGoogle Scholar
  24. Nieto, H., Sandholt, I., Aguado, I., Chuvieco, E., Stisen, S. (2011). Air temperature estimation with MSG-SEVIRI data: calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sensing of Environment, 115(1), 107–116.  https://doi.org/10.1016/j.rse.2010.08.010 http://linkinghub.elsevier.com/retrieve/pii/S0034425710002506.CrossRefGoogle Scholar
  25. Oyler, J.W., Ballantyne, A., Jencso, K., Sweet, M., Running, S.W. (2015). Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature: topoclimatic daily air temperature. International Journal of Climatology, 35(9), 2258–2279. http://doi.wiley.com/10.1002/joc.4127.CrossRefGoogle Scholar
  26. Shah, D.B., Pandya, M.R., Trivedi, H.J., Jani, A.R. (2012). Estimation of minimum and maximum air temperature using MODIS data over Gujarat. Journal of Agrometeorology, 14(2), 111–118. http://agrimetassociation.org/Images/Paper/14/9/1/307.pdf.Google Scholar
  27. Stisen, S., Sandholt, I., Nørgaard, A, Fensholt, R, Eklundh, L. (2007). Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Environment, 110 (2), 262–274.  https://doi.org/10.1016/j.rse.2007.02.025 http://linkinghub.elsevier.com/retrieve/pii/S0034425707000995.CrossRefGoogle Scholar
  28. Sun, Y.J., Wang, J.F., Zhang, R.H., Gillies, R.R., Xue, Y., Bo, Y.C. (2005). Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology, 80 (1), 37–48. https://doi.org/10.1007/s00704-004-0079-y https://doi.org/10.1007/s00704-004-0079-y.CrossRefGoogle Scholar
  29. Tsai, P.J., Lin, T.H., Teng, H.J., Yeh, H.C. (2018). Critical low temperature for the survival of aedes aegypti in taiwan. Parasites & Vectors, 11(1), 22.CrossRefGoogle Scholar
  30. Tsunoda, T., Cuong, T.C., Dong, T.D., Yen, N.T., Le, N.H., Phong, T.V., Minakawa, N. (2014). Winter refuge for Aedes aegypti and Ae. albopictus mosquitoes in Hanoi during Winter. PLoS ONE, 9(4), e95,606.  https://doi.org/10.1371/journal.pone.0095606.CrossRefGoogle Scholar
  31. Tucker, C. (1979). Red and photographic infrared linear combinations for monitoring vegetation.pdf. Remote Sensing of Environment, 8, 127–150.CrossRefGoogle Scholar
  32. Vancutsem, C., Ceccato, P., Dinku, T., Connor, S.J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465.  https://doi.org/10.1016/j.rse.2009.10.002. http://linkinghub.elsevier.com/retrieve/pii/S0034425709003113.CrossRefGoogle Scholar
  33. Vezzani, D., Rubio, A., Velázquez, S, Schweigmann, N., Wiegand, T. (2005). Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Tropica, 95(2), 123–131.  https://doi.org/10.1016/j.actatropica.2005.03.010. http://linkinghub.elsevier.com/retrieve/pii/S0001706X05001294.CrossRefGoogle Scholar
  34. Voogt, J., & Oke, T. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384.  https://doi.org/10.1016/S0034-4257(03)00079-8. http://linkinghub.elsevier.com/retrieve/pii/S0034425703000798.CrossRefGoogle Scholar
  35. Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335–344.  https://doi.org/10.1016/j.isprsjprs.2009.03.007 http://linkinghub.elsevier.com/retrieve/pii/S092427160900046X.CrossRefGoogle Scholar
  36. Yang, H.M., Macoris, M.L.G., Galvani, K.C., Andrighetti, M.T.M., Wanderley, D.M.V. (2009). Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiology and Infection, 137(08), 1188.  https://doi.org/10.1017/S0950268809002040. http://www.journals.cambridge.org/abstract_S0950268809002040.CrossRefGoogle Scholar
  37. Zhu, W., L A, Jia, S. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62–73.  https://doi.org/10.1016/j.rse.2012.10.034. http://linkinghub.elsevier.com/retrieve/pii/S0034425712004221.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Renaud Misslin
    • 1
    • 2
  • Yvette Vaguet
    • 1
  • Alain Vaguet
    • 1
  • Éric Daudé
    • 1
  1. 1.CNRS UMR IDEES 6266Université de RouenRouenFrance
  2. 2.INRA, LAEUniversité de LorraineColmarFrance

Personalised recommendations