Impact of land cover types on soil aggregate stability and erodibility

  • Remzi İlayEmail author
  • Yasemin Kavdir


Gökçeada is the biggest island, and it is also known as the organic island of Turkey. Approximately 65% of the Gökçeada lands have slope > 12%. Climate, topography, land cover, and soil characteristics are considered to be the main natural factors affecting soil erosion severity in the Gökçeada. Prevention of soil degradation, hence the preservation or improvement of the overall quality of the soil, is directly related to the presence of stable soil aggregates. In addition, the resistance to weathering and replacement of soil particles are also relevant aspects in terms of sustainability. Aggregate stability (AS) and erodibility of land (Kfac) are related to soil properties. However, this relationship can vary under different circumstances. In this study, 248 surface soil samples have been taken from forest and semi-natural areas (FSNA) and agricultural areas (AGRA) according to CORINE 2006. Eleven selected soil properties were measured, and their impacts on AS and Kfac (RUSLE-K) were determined by using the CRT (classification and regression tree) in Gökçeada. Results showed that the relations among soil characteristics changed according to the land cover classes. Total organic carbon is much more associated with AS in AGRA, while total carbon is associated with AS in FSNA. The effect of calcium carbonate on Kfac was higher than other soil properties when the land cover type was ignored. On the other hand, in AGRA, the effect of between clay content on Kfac was greater than those of FSNA.


Gökçeada Land cover class Soil erodibility Aggregate stability Kfac (RUSLE-K) 


Funding information

This study was supported by the COMU-BAP Project 2012/17.


  1. Acosta-Martinez, V., Zobeck, T. M., Gill, T. E., & Kennedy, A. C. (2003). Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of Soils, 38, 216–227.CrossRefGoogle Scholar
  2. Alexander, E. B. (1989). Bulk density equations for southern Alaska soils. Canadian Journal of Soil Science, 69(1), 177–180.CrossRefGoogle Scholar
  3. Anonymous. (1993). Gökçeada and Bozcaada agricultural devolopment and settlement project (Project Number: 1993A020020).Google Scholar
  4. Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment, 88, 153–160.CrossRefGoogle Scholar
  5. Auerswald, K., Kainz, M., Angermüller, S., & Steindl, H. (1996). Influence of exchangeable potassium on soil erodibility. Soil Use and Management, 12(3), 117–121.CrossRefGoogle Scholar
  6. Başaran, M., Erpul, G., Tercan, A. E., & Çanga, M. R. (2008). The effects of land use changes on some soil properties in İndağı Mountain Pass–Çankırı, Turkey. Environmental Monitoring and Assessment, 136(1–3), 101–119.Google Scholar
  7. Bayramin, İ., Basaran, M., Erpul, G., & Canga, M. R. (2008). Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey. Environmental Monitoring and Assessment, 140(1–3), 249–265.CrossRefGoogle Scholar
  8. Beare, M. H., & Bruce, R. R. (1993). A comparison of methods for measuring water-stable aggregates: implications for determining environmental effects on soil structure. Geoderma, 56(1), 87–104.CrossRefGoogle Scholar
  9. Blair, N., Faulkner, R. D., Till, A. R., & Poulton, P. R. (2006a). Long-term management impacts on soil C, N and physical fertility—part 1: broadbalk experiment. Soil & Tillage Research, 91, 30–38.CrossRefGoogle Scholar
  10. Blair, N., Faulkner, R. D., Till, A. R., Korschens, M., & Schulz, E. (2006b). Long-term management impacts on soil C, N and physical fertility—part II: Bad Lauchstadt Static and Extreme Fym Experiments. Soil & Tillage Research, 91, 39–47.CrossRefGoogle Scholar
  11. Blake, G. R. (1965). Bulk density. In: Black CA (ed) Methods of soil analysis, Part 1. American Society of Agronomy,  374–390.Google Scholar
  12. Borůvka, L., Mládková, L., Penížek, V., Drábek, O., & Vašát, R. (2007). Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma, 140(4), 374–382.CrossRefGoogle Scholar
  13. Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43, 434–438.CrossRefGoogle Scholar
  14. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New York: Chapman Hall/CRC.Google Scholar
  15. Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124, 3–22.CrossRefGoogle Scholar
  16. Chang, L. Y., & Wang, H. W. (2006). Analysis of traffic injury: An application of non-parametric classification tree techniques. Accident; Analysis and Prevention, 38, 1019–1027.CrossRefGoogle Scholar
  17. Christensen, B. T. (2001). Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52(3), 345–353.CrossRefGoogle Scholar
  18. CORINE. (2006). Coordination of information on the environment. Corine Land Cover,  2006 Raster Data 100 x 100 m - Version 13 (02/2010).Google Scholar
  19. Curtis, R. O., & Post, B. W. (1964). Estimating Bulk Density from Organic-Matter Content in Some Vermont Forest Soils 1. Soil Science Society of America Journal, 28(2), 285–286.CrossRefGoogle Scholar
  20. Cusack Daniela, F., Chadwick Oliver, A., & Ladefoged Thegn, V. P. M. (2013). Long-term effects of agriculture on soil carbon pools and carbon chemistry along a Hawaiian environmental gradient. Biogeochemistry, 112(1–3), 229–243.CrossRefGoogle Scholar
  21. Da Silva, A. P., Kay, B. D., & Perfect, E. (1997). Management versus inherent soil properties effects on bulk density and relative compaction. Soil and Tillage Research, 44(1), 81–93.CrossRefGoogle Scholar
  22. De la Rosa, D., & Sobral, R. (2008). Soil quality and methods for its assessment. In A. K. Braimoh & P. L. G. Vlek (Eds.), Land use and soil resources (pp. 167–200). Dordrecht: Springer Science + Business Media B.V.CrossRefGoogle Scholar
  23. Evrendilek, F., Celik, I., & Kilic, S. (2004). Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forests, grassland and cropland ecosystems. Journal of Arid Environments, 59, 743–752.CrossRefGoogle Scholar
  24. Falkengren-Grerup, U., ten Brink, D. J., & Brunet, J. (2006). Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. Forest Ecology and Management, 225(1), 74–81.CrossRefGoogle Scholar
  25. Girma, T. (1998). Effect of cultivation on physical and chemical properties of a Vertisol in Middle Awash Valley, Ethiopia. Communications in Soil Science and Plant Analysis, 29(5–6), 587–598.CrossRefGoogle Scholar
  26. Grewelling, T., & Peech, M. (1960). Chemical soil test. Cornell University Agr. Expt. Sta. Bull. 960 p.Google Scholar
  27. Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta-analysis. Global Change Biology, 8, 345–360.CrossRefGoogle Scholar
  28. Gupta, O. P. (2002). Water in relation to soils and plants (pp. 31–34). India: Agrobios.Google Scholar
  29. Hill, T., & Lewicki, P. (2006). Statistics: methods and applications: a comprehensive reference for science, industry, and data mining. Classification trees, Chapter 9, pp 97-114. Tulsa: StatSoft, Inc.Google Scholar
  30. Hoyos, N. (2005). Spatial modeling of soil Erosion potential in a tropical watershed of the Colombian Andes. Catena, 63, 85–108.CrossRefGoogle Scholar
  31. İlay, R. (2016). Gökçeada Topraklarının Bazı Kalite Parametreleri ve Erozyon Riskinin Belirlenmesi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Çanakkale.Google Scholar
  32. İlay, R., & Kavdır, Y. (2017). Farklı Arazi Kullanım Türlerinin Topraktaki Suda Çözünebilir İyon Kapsamına Etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi., 54(3), 367–375.CrossRefGoogle Scholar
  33. Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems & Environment, 79(1), 9–16.CrossRefGoogle Scholar
  34. Kavdir, Y., Özcan, H., Ekinci, H., Yüksel, O., & Yiğini, Y. (2004). The influence of clay content, organic carbon and land use types on soil aggregate stability and tensile strength. Turkish Journal of Agriculture and Forestry, 28(3), 155–162.Google Scholar
  35. Kavdır, Y., Camcı Çetin, S., Öztürkmen, A. R., & Öztürk, H. S. (2006). Organik Tarımda Toprak Kalitesinin Önemi. In I. H. Eraslan & F. Selli (Eds.), Sürdürülebilir Rekabet Avantaji Elde Etmede Organik Tarim Sektörü Sektörel Stratejiler Ve Uygulamalar. Uluslararası Rekabet Arastirmalari Kurumu Dernegi (Urak) Yayınlari No: 2006/1, İstanbul, Bölüm 9.Google Scholar
  36. Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis. Part 1: physical and mineralogical methods. (Monograph no.9, 2nd edn). Madison: ASA.Google Scholar
  37. Kesgin, Y., & Varol, B. (2003). Gökçeada ve Bozcaada’nın tersiyer jeolojisi. MTA Dergisi, 126, 49–67.Google Scholar
  38. Khresat, S. E., Al-Bakri, J., & Al-Tahhan, R. (2008). Impacts of land use/cover change on soil properties in the Mediterranean region of northwestern Jordan. Land Degradation & Development, 19(4), 397–407.CrossRefGoogle Scholar
  39. Lim, T. S., Loh, L. Y., & Shih, Y. S. (2000). A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms. Machine Learning, 40, 203–229.CrossRefGoogle Scholar
  40. Morgan, R. P. C. (2005). Soil Erosion and conservation. The United Kingdom: Blackwell.Google Scholar
  41. Öner, E. (2001). Gökçeada kıyılarında Holosen deniz seviyesi ve kıyı çizgisi değişmeleri. Türkiye’nin Kıyı ve Deniz Alanları. III. Ulusal Konferansı Bildiriler Kitabı, Ankara, 779-789 (In Turkish).Google Scholar
  42. Perie, C., & Ouimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88(3), 315–325.CrossRefGoogle Scholar
  43. Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agriculture, Ecosystems & Environment, 200, 33–41.CrossRefGoogle Scholar
  44. Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156(3-4), 75–83.CrossRefGoogle Scholar
  45. Pritchett, K., Kennedy, A. C., & Cogger, C. G. (2011). Management effects on soil quality in organic vegetable systems in western Washington. Soil Science Society of America Journal, 75, 605–615.CrossRefGoogle Scholar
  46. Rhoades, J. D., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., et al. (1996). Salinity: electrical conductivity and total dissolved solids. In Methods of soil analysis. Part 3. Chemical methods (pp. 417–435).Google Scholar
  47. Rhoton, F. E., Lindbo, D. L., & Romkens, M. J. M. (1998). Iron oxides erodibility interactions for soils of the Memphis catena. Soil Science Society of America Journal, 62(3), 1693–1703.CrossRefGoogle Scholar
  48. Richards L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook No: 60 (pp. 94). Washington D.C: U.S. Department of Agriculture.Google Scholar
  49. Rodriguez, R. R., Arbelo, C. D., Guerra, J. A., Natario, M. J. S., & Armas, C. M. (2006). Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena, 66, 228–235.CrossRefGoogle Scholar
  50. Santos, F. L., Reis, J. L., Martins, O. C., Castanheira, N. L., & Serralheiro, R. P. (2003). Comparative assessment of infiltration, runoff and erosion of sprinkler irrigated soils. Biosystems Engineering, 86(3), 355–364.CrossRefGoogle Scholar
  51. Sarı R., Türkecan, A., Dönmez, M., Küçükefe, Ş., Aydın, Ü., & Özmen, Ö. (2015). The Geology of Gökçeada (Çanakkale). Bulletin Of The Mineral Research and Exploration, (150).
  52. Saygın, S. D., Basaran, M., Ozcan, A. U., Dolarslan, M., Timur, O. B., Yilman, F. E., & Erpul, G. (2011). Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment. Environmental Monitoring and Assessment, 180(1–4), 201–215.CrossRefGoogle Scholar
  53. Scanlon, B. R., Stonestrom, D. A., Reedy, R. C., Leaney, F. W., Gates, J., & Cresswell, R. G. (2009). Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resources Research, 45(7). W00A18.
  54. Schlichting, E., & Blume, E. (1966). Bodenkundliches Practikum. Hamburg Und Berlin: Verlag Paul Parey.Google Scholar
  55. Schoeneberger, P. J. (2002). Field book for describing and sampling soils, version 3.0. Government Printing Office.Google Scholar
  56. Six, J., Elliott, E. T., & Paustian, K. (2000). Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64(3), 1042–1049.CrossRefGoogle Scholar
  57. Summer, R. M. (1982). Field and laboratory studies on alpine soil erodibility, southern Rocky Mountains, Colorado. Soil Use and Management, 7(3), 253–266.Google Scholar
  58. VanRemortel, R. D., & Shields, D. A. (1993). Comparison of clod and core methods for determination of soil bulk density. Communications in Soil Science and Plant Analysis, 24(17–18), 2517–2528.CrossRefGoogle Scholar
  59. Veihe, A. (2002). The spatial variability of erodibility and its relation to soil types: a study from northern Ghana. Geoderma, 106, 101–120.CrossRefGoogle Scholar
  60. Whitbread, A. M., Blair, G. J., & Lefroy, R. D. B. (2000). Managing legume leys, residues and fertilisers to enhance the sustainability of wheat cropping systems in Australia. 2. Soil physical fertility and carbon. Soil & Tillage Research, 54, 77–89.CrossRefGoogle Scholar
  61. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses—a guide to conservation planning. Agricultural Handbook, No. 537. USDA.Google Scholar
  62. Zhang, K., Li, S., Peng, W., & Yu, B. (2004). Erodibility of agricultural soils and loess plateau of China. Soil and Tillage Research, 76, 157–165.CrossRefGoogle Scholar
  63. Zhao, W. Z., Xiao, H. L., Liu, Z. M., & Li, J. (2005). Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China. Catena, 59, 173–186.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Agricultural Faculty, Soil Science and Plant Nutrition DepartmentÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations