Responses of the zooplankton community to peak and waning periods of El Niño 2015–2016 in Kavaratti reef ecosystem, northern Indian Ocean

  • G. VineethaEmail author
  • Kusum Komal Karati
  • T. V. Raveendran
  • K. K. Idrees Babu
  • C. Riyas
  • M. I. Muhsin
  • B. K. Shihab
  • Cheruvathoor Simson
  • P. Anil


The study addressed the impact of the El Niño 2015–2016 on the ecosystem functioning and the subsequent effects on the distribution and community structure of zooplankton in the Kavaratti reef, a prominent coral atoll in the tropical Indian Ocean. The elevated ocean temperature (SST) associated with El Niño resulted in a mass bleaching event affecting > 60% of the live corals of the Kavaratti atoll. The concomitant changes observed in the nutrient concentration, coral health, and phytoplankton of the reef environment during the course of the El Niño led to discernible variations in the zooplankton community with markedly higher abundance and heterogeneity in distribution during the peak period of El Niño compared to its waning phase. A notable shift was also evident in the community structure of Copepoda, the dominant zooplankton taxon, with a predominance of calanoids and poecilostomatoids in the peak period and by harpacticoid copepods in the waning phase of the El Niño. The harpacticoid, Macrosetella gracilis, dominated in the waning phase because of their unique adaptability in the utilization of Trichodesmium erythraeum, both as nutritional and physical substrates in the nutrient-depleted environment of the reef ecosystem.


El Niño Ecosystem functioning Macrosetella gracilis Coral bleaching Trichodesmium erythraeum 



Our sincere thanks to CSIR-NIO, CMFRI, and DST, Lakshadweep for the facilities provided. KKK is thankful to CSIR for a post-doctoral fellowship. This is NIO contribution 6260.

Funding information

This research program was supported by the Institutional project OLP 1210 of CSIR-NIO.

Supplementary material

10661_2018_6842_Fig11_ESM.png (12 kb)
Supplementary Figure 1

The interrelation of the zooplankton abundance with the various size structured phytoplankton biomass. (PNG 11 kb)

10661_2018_6842_MOESM1_ESM.tif (35 kb)
High Resolution Image (TIF 34 kb)


  1. Achuthankutty, C. T., Nair, S. R., Haridas, P., & Madhupratap, M. (1989). Zooplankton composition of the Kalpeni and Agatti atolls, Lakshadweep archipelago. Indian Journal of Marine Science, 18, 151–154.Google Scholar
  2. Armbrust, E. V. (2009). The life of diatoms in the world’s oceans. Nature, 459, 185–192.CrossRefGoogle Scholar
  3. Arthur, R. (2000). Coral bleaching and mortality in three Indian reef regions during an El Niño southern oscillation event. Current Science, 79, 1723–1729.Google Scholar
  4. Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coastal and Shelf Science, 80, 435–471.CrossRefGoogle Scholar
  5. Bakun, A., & Broad, K. (2003). Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Nino effects in the Pacific. Fisheries Oceanography, 12, 458–473.CrossRefGoogle Scholar
  6. Barton, B. A., Morgan, J. D., Vijayan, M. M., & Adams, S. M. (2002). Physiological and condition-related indicators of environmental stress in fish. In S. M. Adams (Ed.), Biological indicators of aquatic ecosystem stress (pp. 111–148). Bethesda: American Fisheries Society.Google Scholar
  7. Bergman, B., Sandh, G., Lin, S., Larsson, J., & Carpenter, E. J. (2013). Trichodesmium—a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiology Reviews, 37, 286–302.CrossRefGoogle Scholar
  8. Bjӧrnberg, T. K. S. (1965). Observations on the development and the biology of the Miracidae Dana (Copepoda: Crustacea). Bulletin of Marine Science, 15, 512–520.Google Scholar
  9. Bӧttger-Schnack, R., & Schnack, D. (1989). Vertical distribution and population structure of Macrosetella gracilis (Copepoda: Harpacticoida) in the Red Sea in relation to the occurrence of Oscillatoria (Trichodesmium) spp (Cyanobacteria). Marine Ecology Progress Series, 52, 17–31.CrossRefGoogle Scholar
  10. Bravo, I., Fernandez, M. L., & Martinez, R. A. (2001). Toxin composition of the toxic dinoflagellate Prorocentrum lima isolated from different locations along the Galician coast (NW Spain). Toxicon, 39, 1537–1545.CrossRefGoogle Scholar
  11. Brown, B. E., & Bythell, J. C. (2005). Perspectives on mucus secretion in reef corals. Marine Ecology Progress Series, 296, 291–309.CrossRefGoogle Scholar
  12. Carpenter, E. J., & Price, C. C. (1977). Nitrogen fixation, distribution, and production of Oscillatoria (Trichodesmium) spp. in the western Sargasso and Caribbean Seas. Limnology and Oceanography, 22, 60–72.CrossRefGoogle Scholar
  13. Chen, S., Wu, R., Chen, W., Yu, B., & Cao, X. (2016). Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmospheric Science Letters, 17, 384–391.CrossRefGoogle Scholar
  14. Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J., & Baum, J. K. (2018). Global patterns and impacts of El Niño events on coral reefs: a meta-analysis. PLoS One, 13(2), e0190957.CrossRefGoogle Scholar
  15. Clarke, K. R., & Gorley, R. N. (2015). PRIMER v7: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
  16. Clifford, H. T., & Stephensen, W. (1975). An introduction to numerical classification. New York: Academic Press.Google Scholar
  17. Coles, S. L., & Strathmann, R. (1973). Observations on coral mucus “flocs” and their potential trophic significance. Limnology and Oceanography, 18, 673–678.CrossRefGoogle Scholar
  18. Conway, D. V. P., White, R. G., Hugues-Dit-Ciles, J., Gallienne, C. P., & Robins, D. B. (2003). Guide to the coastal and surface zooplankton of the South-Western Indian Ocean. Plymouth: Marine Biological Association of the United Kingdom.Google Scholar
  19. Costello, M. J., & Chaudhary, C. (2017). Marine biodiversity, biogeography, deep-sea gradients, and conservation. Current Biology, 27, R511–R527.CrossRefGoogle Scholar
  20. De Goeij, J. M., Van Oevelen, D., Vermeij, M. J., Osinga, R., Middelburg, J. J., de Goeij, A. F., & Admiraal, W. (2013). Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science, 342, 108–110.CrossRefGoogle Scholar
  21. Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., Weeks, S., Evans, R. D., Williamson, D. H., & Hoegh-Guldberg, O. (2009). Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS One, 4(4), e5239.CrossRefGoogle Scholar
  22. Ducklow, H. W., & Mitchell, R. (1979). Composition of mucus released by coral reef coelenterates. Limnology and Oceanography, 24, 706–714.CrossRefGoogle Scholar
  23. Eakin, M. (2016). Outlook on coral bleaching: El Niño, the guest overstaying his welcome. Presentation in 35 Meeting Washington DC, February, 2016.
  24. Eberl, R., Cohen, S., Cipriano, F., & Carpenter, E. J. (2007). Genetic diversity of the pelagic harpacticoid copepod Macrosetella gracilis on colonies of the cyanobacterium Trichodesmium spp. Aquatic Biology, 1, 33–43.CrossRefGoogle Scholar
  25. Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, 881–884.CrossRefGoogle Scholar
  26. Gerber, R., & Gerber, M. (1979). Ingestion of natural particulate organic matter and subsequent assimilation, respiration and growth by tropical lagoon zooplankton. Marine Biology, 52, 33–43.CrossRefGoogle Scholar
  27. Glynn, P. W. (1988). El Niño-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Annual Review of Ecology Evolution and Systematics, 19, 309–346.CrossRefGoogle Scholar
  28. Glynn, P. W., Mones, A. B., Podestá, G. P., Colbert, A., & Colgan, M. W. (2017). El Niño-Southern Oscillation: Effects on Eastern Pacific coral reefs and associated biota. In P. W. Glynn, D. P. Manzello, & I. C. Enochs (Eds.), Coral reefs of the Eastern Tropical Pacific (pp. 251–290). Netherlands: Springer.CrossRefGoogle Scholar
  29. Gottfried, M., & Roman, M. R. (1983). Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Marine Biology, 72, 211–218.CrossRefGoogle Scholar
  30. Grasshoff, K. (1983). Determination of oxygen. In K. Grasshoff, M. Ehrhardt, & K. Kremling (Eds.), Methods of sea water analysis (pp. 61–72). Weinheim: Verlag Chemie.Google Scholar
  31. Hagen, W. (2000). Biovolume and biomass determinations. In R. Harris, P. Wiebe, J. Lenz, H. R. Skjoldal, & M. E. Huntley (Eds.), ICES zooplankton methodology manual (pp. 87–147). London: Academic Press.Google Scholar
  32. Hancock, G. J., Webster, I., & Stieglitz, T. C. (2006). Horizontal mixing of Great Barrier Reef waters: offshore diffusivity determined from radium isotope distribution. Journal of Geophysical Research Oceans, 111, C12019. CrossRefGoogle Scholar
  33. Haridas, P., & Madhupratap, M. (1977). Acartia dweepi, a new species of copepod (Acartidae, galanoida) from Lakshadweep. Current Science, 47, 176–177.Google Scholar
  34. Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., & Huntley, M. E. (Eds.). (2000). ICES zooplankton methodology manual. London: Academic Press.Google Scholar
  35. Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology and Evolution, 20, 337–344.CrossRefGoogle Scholar
  36. Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 796–822.Google Scholar
  37. Heidelberg, K. B., O'Neil, K. L., Bythell, J. C., & Sebens, K. P. (2010). Vertical distribution and diel patterns of zooplankton abundance and biomass at Conch Reef, Florida Keys (USA). Journal of Plankton Research, 32, 75–91.CrossRefGoogle Scholar
  38. Houlbrèque, F., Tambutté, E., Allemand, D., & Ferrier-Pagès, C. (2004). Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Biology, 207, 1461–1469.CrossRefGoogle Scholar
  39. James, P. S. B. R. (2011). The Lakshadweep: islands of ecological fragility, environmental sensitivity and anthropogenic vulnerability. Journal of Coastal Environment, 2, 9–25.Google Scholar
  40. Kämpf, J., & Chapman, P. (2016). Upwelling systems of the world. A scientific journey to the most productive marine ecosystem. Switzerland: Springer.Google Scholar
  41. Karati, K. K., Vineetha, G., Madhu, N. V., Anil, P., Dayana, M., Shihab, B. K., Muhsin, A. I., Riyas, C., & Raveendran, T. V. (2017). Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016. Environmental Monitoring and Assessment, 189, 1–17.CrossRefGoogle Scholar
  42. Kelley, R. (2009). Indo Pacific coral finder. See
  43. Lefcheck, J. S., Byrnes, J. E., Isbell, F., et al. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 1–7.CrossRefGoogle Scholar
  44. Luo, J. J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R., & Yamagata, T. (2010). Interaction between El Nino and extreme Indian ocean dipole. Journal of Climate, 23, 726–742.CrossRefGoogle Scholar
  45. Madhupratap, M., Achuthankutty, C. T., & Nair, S. S. (1991). Zooplankton of the lagoons of the Laccadives: diel patterns and emergence. Journal of Plankton Research, 13, 947–958.CrossRefGoogle Scholar
  46. McPhaden, M. J. (2004). Evolution of the 2002/03 El Niño. Bulletin of the American Meteorological Society, 85, 677–695.CrossRefGoogle Scholar
  47. McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. Science, 314, 1740–1745.CrossRefGoogle Scholar
  48. Morton, S. L., & Tindall, D. R. (1995). Morphological and biochemical variability of the toxic dinoflagellate Prorocentrum lima isolated from three locations at Heron Island, Australia. Journal of Phycology, 31, 914–921.CrossRefGoogle Scholar
  49. Muraleedharan, P. M., & Prasannakumar, S. (1996). Arabian Sea upwelling—a comparison between coastal and open ocean regions. Current Science, 71, 842–846.Google Scholar
  50. O'Neil, J. M. (1998). The colonial cyanobacterium Trichodesmium as a physical and nutritional substrate for the harpacticoid copepod Macrosetella gracilis. Journal of Plankton Research, 20, 43–59.CrossRefGoogle Scholar
  51. O'Neil, J. M., & Roman, M. R. (1994). Ingestion of the cyanobacterium Trichodesmium spp. by pelagic harpacticoid copepods Macrosetella, Miracia and Oculosetella. Hydrobiologia, 292, 235–240.CrossRefGoogle Scholar
  52. Richardson, A. J. (2008). In hot water: zooplankton and climate change. ICES Journal of Marine Science, 65, 279–295.CrossRefGoogle Scholar
  53. Richman, S., Loya, Y., & Sloboclkin, L. B. (1975). The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnology and Oceanography, 20, 918–923.CrossRefGoogle Scholar
  54. Seckbach, J., & Kociolek, J. P. (Eds.). (2011). The diatom world. New York: Springer.Google Scholar
  55. SenGupta, R., Mores, C., Kureishy, T. W., Sankaranarayanan, V. N., Jana, T. K., Naqvi, S. W. A., & Rajagopal, M. D. (1979). Chemical oceanography of the Arabian Sea: part IV—Laccadive Sea. Indian Journal of Geo-Marine Sciences, 8, 215–221.Google Scholar
  56. Sewell, R. B. S. (1999). The copepod of Indian seas. India: Daya Books.Google Scholar
  57. Shenoi, S. S. C., Shankar, D., & Shetye, S. R. (1999). On the sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon. Journal of Geophysical Research Oceans, 104(C7), 15703–15712.CrossRefGoogle Scholar
  58. Sohm, J. A., & Capone, D. G. (2006). Phosphorus dynamics of the tropical and subtropical North Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series, 317, 21–28.CrossRefGoogle Scholar
  59. Sommer, U. (2000). Scarcity of medium-sized phytoplankton in the northern Red Sea explained by strong bottom-up and weak top-down control. Marine Ecology Progress Series, 197, 19–25.CrossRefGoogle Scholar
  60. Stramma, L., Fischer, T., Grundle, D. S., Krahmann, G., Bange, H. W., & Marandino, C. A. (2016). Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Science, 12, 861–873.CrossRefGoogle Scholar
  61. Tomas, C. R. (1997). Identifying marine phytoplankton. New York: Academic Press.Google Scholar
  62. Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N. C., & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research Oceans, 103(C7), 14291–14324.CrossRefGoogle Scholar
  63. Van den Wollenberg, A. L. (1977). Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika, 42, 207–219.CrossRefGoogle Scholar
  64. Vijay Anand, P. E., & Pillai, N. G. K. (2007). Coral reef fish abundance and diversity of seagrass beds in Kavaratti atoll, Lakshadweep, India. Indian Journal of Fisheries, 54, 11–20.Google Scholar
  65. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle Scholar
  66. Warwick, R. M., Clarke, K. R., & Somerfield, P. J. (2008). k-Dominance curves. In S. E. Jørgensen & B. D. Fath (Eds.), Ecological indicators. 3, encyclopedia of ecology, 5 (pp. 2055–2057). Oxford: Elsevier.Google Scholar
  67. Wilson, S. G., Taylor, J. G., & Pearce, A. F. (2001). The seasonal aggregation of whale sharks at Ningaloo Reef, Western Australia: currents, migrations and the El Nino/Southern Oscillation. Environmental Biology of Fishes, 61, 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • G. Vineetha
    • 1
    • 2
    Email author
  • Kusum Komal Karati
    • 2
    • 3
  • T. V. Raveendran
    • 2
  • K. K. Idrees Babu
    • 4
  • C. Riyas
    • 4
  • M. I. Muhsin
    • 4
  • B. K. Shihab
    • 4
  • Cheruvathoor Simson
    • 4
  • P. Anil
    • 2
  1. 1.Central Marine Fisheries Research InstituteKochiIndia
  2. 2.National Institute of Oceanography-CSIRKochiIndia
  3. 3.Centre for Marine Living Resources & EcologyKochiIndia
  4. 4.Department of Science and TechnologyKavarattiIndia

Personalised recommendations