Advertisement

Low-dose action of tryptanthrin and its derivatives against developing embryos of the sea urchin Strongylocentrotus intermedius

  • Irina G. Agafonova
  • Taisiya V. Moskovkina
Article
  • 52 Downloads

Abstract

Nine tryptanthrin derivatives, including tryptanthrin itself, were synthesized using different methods, including oxidation of the corresponding isatins to obtain 14, the reaction of tryptanthrin 1 with hydrazine and its derivatives to obtain 57, and aldol condensation of 1 with acetone and methylethylketone to obtain 8 and 9. The action of 1–9 in doses corresponding to the IC50 against developing embryos of the sea urchin Strongylocentrotus intermedius and in the sperm test allowed us to estimate to potency of all the compounds and to determine which were cytotoxic. In addition, these studies showed that compounds 3, 4, 8, and 9 had a stimulatory effect at lower doses. In particular, the tryptanthrin derivatives stimulated the larval stages of development in surviving embryos at concentrations lower than the IC50.

Keywords

Thryptanthrin Sea urchin embryos Cytotoxicity Stimulatory effects 

Notes

Funding

This study was partially supported by a grant from the Russian Scientific Fund (project no. 14-25-00037) and FEBRAS Grant No. 15 - I - 5- 006.

References

  1. Bergman, J., Gestad, D., & Lindstrom, J. (1977). The structure of some indolic constituents in Couroupita guaianensis. Tetrahedron Letters, 18, 2625–2630.  https://doi.org/10.1016/S0040-4039(01)83838-7.CrossRefGoogle Scholar
  2. Brufani, M., Fedeli, W., Mazza, F., Gerhard, A., & Keller-Schierlein, W. (1971). The structure of tryptanthrin. Experientia, 27, 1249–1250.  https://doi.org/10.1007/BF02136666.CrossRefGoogle Scholar
  3. Buznikov, G. & Podmarev, V. (1990). Sea urchins Strongylocentrotus droebachiensis, S. nudus, S. intermedius. Animal species for developmental studies, Invertebrates, NY. London: Cons. Bureau 1, 253285.  https://doi.org/10.1007/978-1-4613-0503-3.Google Scholar
  4. Buznikov, G., Shmukler, Y., & Lauder, J. (1996). From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cellular and Molecular Neurobiology, 16, 532–559.  https://doi.org/10.1007/BF02461353.CrossRefGoogle Scholar
  5. Buznikov, G., Koikov, L., & Shmukler, Y. (1997). Nicotine antagonists (piperidines and quinuclidines) reduce the susceptibility of early sea urchin embryos to agents evoking calcium shock. General Pharmacology, 29(1), 49–53.  https://doi.org/10.1016/S0306-3623(96)00524-1.CrossRefGoogle Scholar
  6. Chavda, V. (2015). “Cannonball tree”: the alchemist plant. Innoriginal International Journal of Sciences, 2(5), 6–9.Google Scholar
  7. Chiang, Y., Leu, Y., Fang, Y., & Lin, Y. (2013). An in vitro study of the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus. Molucules, 18(11), 14381–14396.  https://doi.org/10.3390/molecules181114381.CrossRefGoogle Scholar
  8. Deryabin, P., Moskovkina, T., Shevchenko, L., & Kalinovskii, A. (2017). Synthesis and antimicrobial activity of tryptanthrin adducts with ketones. Russian Journal of Organic Chemistry, 53(3), 418–422 ISSN 1070-4280.CrossRefGoogle Scholar
  9. El-Gendy, M., Shaaban, M., El-Bondkly, A., & Shaaban, K. (2008). Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces. Applied Biochemistry and Biotechnology, 150(1), 85–96.  https://doi.org/10.1007/s12010-008-8192-5.CrossRefGoogle Scholar
  10. Fusetani, N. (1987). Marine metabolites which inhibit development of echinoderm embryos. In P. J. Scheuer (Ed.), Bioorg. Marin. Chem. (Vol. 1). Berlin: Springer.  https://doi.org/10.1007/978-3-642-72726-9_3 Print ISBN978-3-642-72728-3.CrossRefGoogle Scholar
  11. Hamaguchi, Y., & Kuriyamo, R. (2002). Effects of the phosphatase inhibitors, okadaic acid, ATPγS, and calyculin on the dividing sand dollar egg. Cell Structure and Function, 27, 127–137.  https://doi.org/10.1247/csf.27.127.CrossRefGoogle Scholar
  12. Han, N., Moon, P., Kim, H., & Jeong, H. (2014). Tryptanthrin ameliorates atopic dermatitis through down-regulation of TSLP. Archives of Biochemistry and Biophysics, 542, 14–20.  https://doi.org/10.1016/j.abb.2013.11.010.CrossRefGoogle Scholar
  13. Honda, G., Tabata, M., & Tsuda, M. (1979). The antimicrobial specificity of tryptanthrin. Planta Medica, 37, 172–174.  https://doi.org/10.1055/s-0028-1097245.CrossRefGoogle Scholar
  14. Hwang, J., Oh, T., Kaneko, T., Upton, A., Franzblau, S., Ma, Z., Cho, S., & Kim, P. (2013). Design, synthesis, and structure-activity relationship studies of tryptanthrins as antitubercular agents. Journal of Natural Products, 76(3), 354–367.  https://doi.org/10.1021/np3007167.CrossRefGoogle Scholar
  15. Ishihara, T., Kohno, K., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2000). Tryptanthrin inhibits nitric oxide and prostaglandin E (2) synthesis by murine macrophages. European Journal of Pharmacology, 407, 197–204.  https://doi.org/10.1016/S0014-2999(00)00674-9.CrossRefGoogle Scholar
  16. Jao, C., Lin, W., Wu, Y., & Wu, P. (2008). Isolation, structure, elucidation, and synthesis of cytotoxic tryptanthrin analogues from Phaius mishmensis. Journal of Natural Products, 71, 1275–1279.  https://doi.org/10.1021/np800064w.CrossRefGoogle Scholar
  17. Karabi, B., Dipak, P., & Sankar, N. (2016). Marine bacteria: a potential tool for antibacterial activity environmental microbiology. Journal of Applied & Environmental Microbiology, 4, 25–29.  https://doi.org/10.12691/jaem-4-1-3.CrossRefGoogle Scholar
  18. Kiselev, M., Gutberlet, P., Lesieur, P., Hauss, T., Ollivon, M., & Neubert, R. (2005). Properties of ternary phospholipid/dimethyl sulfoxide/water systems at low temperatures. Chemistry and Physics of Lipids, 133, 181–193.  https://doi.org/10.1016/j.chemphyslip.2004.10.002.CrossRefGoogle Scholar
  19. Kiselev, M., Zemlyanaya, E., Aswal, V., & Neubert, R. (2006). What can we learn about the lipid vesicle structure from the small angle neutron scattering experiment? European Biophysics Journal, 35, 477–493.  https://doi.org/10.1007/s00249-006-0055-9.CrossRefGoogle Scholar
  20. Kobayashi, N., Hori, M., Kan, K., Yasuzawa, T., Matsusi, M., Suzuki, S., & Kitagawa, I. (1991). Marine natural products. XXVII. Distribution of lanostane-type triterpene oligo glycosides in ten kinds of Okinawan sea cucumbers. Chemical and Pharmaceutical Bulletin, 39, 2282–2287.  https://doi.org/10.1248/cpb.39.2282.CrossRefGoogle Scholar
  21. Koya-Miyata, S., Kimoto, T., Micallef, M., Hino, K., Taniguchi, M., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2001). Prevention of azoxymethane-induced intestinal tumors by a crude ethyl acetate-extract and tryptanthrin extracted from Polygonum tinctorium Lour. Anticancer Research, 21(5), 3295–3300 ISSN:0250-7005.Google Scholar
  22. Lin, Y., Chen, H., Leu, Y., Yang, Y., Fang, Y., Pang, J., & Hwang, T. (2013). Indigo naturalis up regulates claudin–1 expression in human keratinocytes and psoriatic lesions. Journal of Ethnopharmacology, 145(2), 614–620.  https://doi.org/10.1016/j.jep.2012.11.044.CrossRefGoogle Scholar
  23. Mitscher, L., & Baker, W. (1998). Tuberculosis: a search for novel therapy starting with natural products. Medicinal Research Reviews, 18, 363–374.  https://doi.org/10.1002/(SICI)1098-1128(199811)18:6<363:AID-MED1>3.0.CO;2-I.CrossRefGoogle Scholar
  24. Moskovkina, T., Denisenko, M., Kalinovskii, A., & Stonik, V. (2013). Synthesis of substituted tryptanthrins via oxidation of isatin and its derivatives. Russian Journal of Organic Chemistry, 49(12), 1740–1743 ISSN:1070-4280 Print1608-3393.CrossRefGoogle Scholar
  25. Pergola, C., Jazzar, B., Rossi, A., Northoff, H., Hamburger, M., Sautebin, L., & Werz, O. (2012). On the inhibition of 5–lipoxygenase product formation by tryptanthrin: mechanistic studies and efficiency in vivo. British Journal of Pharmacology, 165(3), 765–776 http://edoc.unibas.ch/dok/A6001502.CrossRefGoogle Scholar
  26. Rasmussen, D., & MacKenzie, A. (1968). Phase diagram for the system water–dimethylsulfoxide. Nature, 220, 1315–1317.  https://doi.org/10.1038/2201315a0.CrossRefGoogle Scholar
  27. Schindler, F., & Zahner, H. (1971). Metabolic products of microorganisms. Tryptanthrin, a tryptophan derived antibiotic from Candida lipolytica. Archives of Microbiology, 79, 187–203.  https://doi.org/10.1007/BF00408783.CrossRefGoogle Scholar
  28. Shaaban, M., Maskey, R., Wagner-Dober, I., & Laatsch, H. (2002). Pharacine, a natural p-Cyclophane and other indole derivatives from Cytophaga sp. strain AM13.1. Journal of Natural Products, 65, 1660–1663.  https://doi.org/10.1021/np020019a.CrossRefGoogle Scholar
  29. Shim, W., Hong, S., Agafonova, I., & Aminin, D. (2006). Comparative toxicities of organotin compounds fertilization and development of sea urchin (Anthocidaris crassispina). Bulletin of Environmental Contamination and Toxicology, 77, 755–762.  https://doi.org/10.1007/s00128-006-1128-2.CrossRefGoogle Scholar
  30. Shmukler, Y. (2008). “Micromere model” of cell–cell interactions in sea urchin early embryos. Biophysics, 55, 399–405.  https://doi.org/10.1134/S0006350910030085.CrossRefGoogle Scholar
  31. Srivastava, R. (2014). A review on phytochemical, pharmacological, and pharmacognostical profile of Wrightia tinctoria: adulterant of kurchi. Pharmacological Reviews, 8(15), 36–44.  https://doi.org/10.4103/0973-7847.125528.CrossRefGoogle Scholar
  32. Utkina, N. (2008). Aromatic metabolites from marine sponges and echinoderms. In 1st Far Eastern Intern. Symp. Life Sci., Vladivostok, September, 2–7, 66.Google Scholar
  33. Utkina, N., & Denisenko, V. (2007). Ophiuroidine, the first indolo [2,1-b]quinazoline alkaloid fromthe Caribbean brittle star Ophiocoma riisei. Tetrahedron Letters, 48, 4445–4447.  https://doi.org/10.1016/j.tetlet.2007.04.057.CrossRefGoogle Scholar
  34. Wagner-Dober, I., Rheims, H., Felske, A., El-Ghezal, A., Flade-Schhoder, D., Laatsch, H., Lang, S., Pukall, R., & Tindall, B. (2004). Oceanibulbus indolifex gen. nov. North Sea alpha–proteobacterium that produced bioactive metabolites. International Journal of Systematic and Evolutionary Microbiology, 54, 1177–1182.  https://doi.org/10.1099/ijs.0.02850-0.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussian Federation
  2. 2.Far Eastern Federal UniversityVladivostokRussian Federation

Personalised recommendations