Skip to main content

Advertisement

Log in

Use of two population metrics clarifies biodiversity dynamics in large-scale monitoring: the case of trees in Japanese old-growth forests

The need for multiple population metrics in large-scale monitoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Many indicators/indices provide information on whether the 2010 biodiversity target of reducing declines in biodiversity have been achieved. The strengths and limitations of the various measures used to assess the success of such measures are now being discussed. Biodiversity dynamics are often evaluated by a single biological population metric, such as the abundance of each species. Here we examined tree population dynamics of 52 families (192 species) at 11 research sites (three vegetation zones) of Japanese old-growth forests using two population metrics: number of stems and basal area. We calculated indices that track the rate of change in all species of tree by taking the geometric mean of changes in population metrics between the 1990s and the 2000s at the national level and at the levels of the vegetation zone and family. We specifically focused on whether indices based on these two metrics behaved similarly. The indices showed that (1) the number of stems declined, whereas basal area did not change at the national level and (2) the degree of change in the indices varied by vegetation zone and family. These results suggest that Japanese old-growth forests have not degraded and may even be developing in some vegetation zones, and indicate that the use of a single population metric (or indicator/index) may be insufficient to precisely understand the state of biodiversity. It is therefore important to incorporate more metrics into monitoring schemes to overcome the risk of misunderstanding or misrepresenting biodiversity dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano, T. (2009). Conserving bird species in Japanese farmland: Past achievements and future challenges. Biological Conservation, 142, 1913–1921.

    Article  Google Scholar 

  • Baillie, J. E. M., Collen, B., Amin, R., Akcakaya, H. R., Butchart, S. H. M., Brummitt, N., et al. (2008). Toward monitoring global biodiversity. Conservation Letters, 1, 18–26.

    Article  Google Scholar 

  • Balmford, A., Bennun, L., ten Brink, B., Cooper, D., Cote, I. M., Crane, P., et al. (2005a). The convention on biological diversity’s 2010 target. Science, 307, 212–213.

    Article  CAS  Google Scholar 

  • Balmford, A., Crane, P., Dobson, A., Green, R. E., & Mace, G. M. (2005b). The 2010 challenge: Data availability, information needs and extraterrestrial insights. Philosophical Transactions of the Royal Society B-Biological Sciences, 360, 221–228.

    Article  Google Scholar 

  • Begon, M., Firbank, L., & Wall, R. (1986). Is there a self-thinning rule for animal populations? Oikos, 46, 122–124.

    Article  Google Scholar 

  • Brawn, J. D., & Robinson, S. K. (1996). Source-sink population dynamics may complicate the interpretation of long-term census data. Ecology, 77, 3–12.

    Article  Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.

    Article  Google Scholar 

  • Buckland, S. T., Magurran, A. E., Green, R. E., & Fewster, R. M. (2005). Monitoring change in biodiversity through composite indices. Philosophical Transactions of the Royal Society B-Biological Sciences, 360, 243–254.

    Article  CAS  Google Scholar 

  • CBD (2005). Handbook of the convention on biological diversity including its cartagena protocol on biosafety (3rd edn.). Montreal: UNEP.

    Google Scholar 

  • Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R., & Baillie, J. E. M. (2009). Monitoring change in vertebrate abundance: The living planet index. Conservation Biology, 23, 317–327.

    Article  Google Scholar 

  • Comita, L. S., Aguilar, S., Perez, R., Lao, S., & Hubbell, S. P. (2007). Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest. Journal of Vegetation Science, 18, 163–174.

    Article  Google Scholar 

  • Condit, R. (1998). Tropical forest census plots: Methods and results from Barro Colorado island, Panama and a comparison with other plots. Georgetown: Springer.

    Google Scholar 

  • Condit, R., Ashton, P., Bunyavejchewin, S., Dattaraja, H. S., Davies, S., Esufali, S., et al. (2006). The importance of demographic niches to tree diversity. Science, 313, 98–101.

    Article  CAS  Google Scholar 

  • Connell, J. H., & Green, P. T. (2000). Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology, 81, 568–584.

    Article  Google Scholar 

  • FAO (2007). State of the world’s forests (2007): Food and agriculture organization of the united nations Rome, ed. Food and Agriculture Organization of the United Nations (FAO).

  • Franklin, J. F., & Hemstorm, M. A. (1981). Aspect of succession in the coniferous forests of Pacific Northwest. In D. C. West, H. H. Shugart, & D. B. Botkin (Eds.), Forest succession. Concepts and application (pp. 212–229). New York: Springer.

    Google Scholar 

  • Gardner, T. A., Barlow, J., Araujo, I. S., Avila-Pires, T. C., Bonaldo, A. B., Costa, J. E., et al. (2008). The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 11, 139–150.

    Google Scholar 

  • Green, R. E., Balmford, A., Crane, P. R., Mace, G. M., Reynolds, J. D., & Turner, R. K. (2005). A framework for improved monitoring of biodiversity: Responses to the world summit on sustainable development. Conservation Biology, 19, 56–65.

    Article  Google Scholar 

  • Homma, T., Sugita, H., Kunisaki, T., & Shimomoto, H. (2005). Forest dynamics for 12 years (1991–2003) in the Ohtakizawa research site, Omyojin experimental forest of Iwate university (in Japanese). Bulletin of the Iwate University forests, 36, 76–90.

    Google Scholar 

  • Hughes, R. N., & Griffiths, C. L. (1988). Self-Thinning in barnacles and mussels: The geometry of packing. The American Naturalist, 132, 484–491.

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: The physical science basis. In S. Solomon, M. M. D. Qin, M. M. Z. Chen, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), IPCC fourth assessment report: Climate change 2007 (AR4). New York: IPCC.

    Google Scholar 

  • Juutinen, A., Monkkonen, M., & Sippola, A. L. (2006). Cost-efficiency of decaying wood as a surrogate for overall species richness in boreal forests. Conservation Biology, 20, 74–84.

    Article  Google Scholar 

  • Kuussaari, M., Bommarco, R., Heikkinen, R. K., Helm, A., Krauss, J., Lindborg, R., et al. (2009). Extinction debt: A challenge for biodiversity conservation. Trends in Ecology & Evolution, 24, 564–571.

    Article  Google Scholar 

  • Kwon, M., Jhun, J. G., & Ha, K. J. (2007). Decadal change in east Asian summer monsoon circulation in the mid-1990s. Geophysical Research Letters, 34, 21706.

    Article  Google Scholar 

  • Lamb, E. G., Bayne, E., Holloway, G., Schieck, J., Boutin, S., Herbers, J., et al. (2009). Indices for monitoring biodiversity change: Are some more effective than others? Ecological Indicators, 9, 432–444.

    Article  Google Scholar 

  • Lawton, J. H., Bignell, D. E., Bolton, B., Bloemers, G. F., Eggleton, P., Hammond, P. M., et al. (1998). Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391, 72–76.

    Article  CAS  Google Scholar 

  • Loh, J., Green, R. E., Ricketts, T., Lamoreux, J., Jenkins, M., Kapos, V., et al. (2005). The living planet index: Using species population time series to track trends in biodiversity. Philosophical Transactions of the Royal Society B-Biological Sciences, 360, 289–295.

    Article  Google Scholar 

  • Lonsdale, W. M. (1990). The self-thinning rule—dead or alive. Ecology, 71, 1373–1388.

    Article  Google Scholar 

  • Lughadha, E. N., Baillie, J., Barthlott, W., Brummitt, N. A., Cheek, M. R., Farjon, A., et al. (2005). Measuring the fate of plant diversity: Towards a foundation for future monitoring and opportunities for urgent action. Philosophical Transactions of the Royal Society B-Biological Sciences, 360, 359–372.

    Article  Google Scholar 

  • Mantgem, P. J. v., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., et al. (2009). Widespread increase of tree mortality rates in the western United States. Science, 323, 521–524.

    Article  Google Scholar 

  • Masaki, T., Tanaka, H., Tanouchi, H., Sakai, T., & Nakashizuka, T. (1999). Structure, dynamics and disturbance regime of temperate broad-leaved forests in Japan. Journal of Vegetation Science, 10, 805–814.

    Article  Google Scholar 

  • Nakashizuka, T. (2001). Species coexistence in temperate, mixed deciduous forests. Trends in Ecology & Evolution, 16, 205–210.

    Article  Google Scholar 

  • Nakashizuka, T., Iida, S., Tanaka, H., Shibata, M., Abe, S., Masaki, T., et al. (1992). Community dynamics of Ogawa forest reserve, a species rich deciduous forest, central Japan. Vegetatio, 103, 105–112.

    Google Scholar 

  • Ohsawa, M. (1993). Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. Journal of Vegetation Science, 4(1), 13–18.

    Article  Google Scholar 

  • Robertson, B. A., & Hutto, R. L. (2006). A framework for understanding ecological traps and an evaluation of existing evidence. Ecology, 87, 1075–1085.

    Article  Google Scholar 

  • Saito, S. (2002). Effects of a severe typhoon on forest dynamics in a warm-temperate evergreen broad-leaved forest in southwestern Japan. Journal of Forest Research, 7, 137–143.

    Article  Google Scholar 

  • Sato, A., & Tanimoto, T. (2003). Distribution characteristics and regeneration opportunities predicted by annual ring analysis of Abies homolepis Sieb. et Zucc. in Oku-Nikko area, Tochigi pref., central Japan (in Japanese). Japanese Journal of Forest Environment, 45, 55–63.

    Google Scholar 

  • Silva, M., & Downing, J. A. (1995). The allometric scaling of density and body mass: A nonlinear relationship for terrestrial mammals. The American Naturalist, 145, 704–727.

    Article  Google Scholar 

  • Stegen, J. C., & White, E. P. (2008). On the relationship between mass and diameter distributions in tree communities. Ecology Letters, 11, 1287–1293.

    Article  Google Scholar 

  • Takatsuki, S. (2009). Effects of sika deer on vegetation in Japan: A review. Biological Conservation, 142, 1922–1929.

    Article  Google Scholar 

  • Takyu, M., Kubota, Y., Aiba, S.-i., Seino, T., & Nishimura, T. (2005). Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecological Research, 20, 287–296.

    Article  Google Scholar 

  • Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371, 65–66.

    Article  Google Scholar 

  • Totman, C. (1989). The green archipelago: Forestry in pre-industrial Japan. Ohio: Ohio University Press.

    Google Scholar 

  • Toyooka, H., Ishizuka, M., Osawa, A., Kushima, H., Kanazawa, Y., & Sato, A. (1992). Forest succession over a thirty-four year period following a catastrophic windstorm in the headwater of the river Isikari, Hokkaido (in Japanese). Bulletin of the Forestry and Forest Products Research Institute, 363, 59–151.

    Google Scholar 

  • Vellend, M., Verheyen, K., Jacquemyn, H., Kolb, A., Van Calster, H., Peterken, G., et al. (2006). Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology, 87, 542–548.

    Article  Google Scholar 

  • Walpole, M., Almond, R. E. A., Besancon, C., Butchart, S. H. M., Campbell-Lendrum, D., Carr, G. M., et al. (2009). Tracking progress toward the 2010 biodiversity target and beyond. Science, 325, 1503–1504.

    Article  Google Scholar 

  • Yamaura, Y., Amano, T., Koizumi, T., Mitsuda, Y., Taki, H., & Okabe, K. (2009). Does land-use change affect biodiversity dynamics at a macroecological scale? A case study of birds over the past 20 years in Japan. Animal Conservation, 12, 110–119.

    Article  Google Scholar 

  • Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions (intraspecific competition among higher plants XI). Journal of the Institute of Polytechnics, Osaka City University, 14, 107–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mifuyu Ogawa.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 75.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, M., Yamaura, Y., Abe, S. et al. Use of two population metrics clarifies biodiversity dynamics in large-scale monitoring: the case of trees in Japanese old-growth forests. Environ Monit Assess 178, 85–94 (2011). https://doi.org/10.1007/s10661-010-1674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1674-2

Keywords

Navigation