Advertisement

Product information diffusion in a social network

  • Ling Zhang
  • Manman Luo
  • Robert J. Boncella
Article

Abstract

There is a need to understand how to: spread product information to maximum range, identifying influential users, and analyze how they are intrinsically connected in a social network. In this paper, we collected tweets of Huawei Mate 9 to analyze users’ information behavior such as tweeting, forwarding, and commenting on tweets. We applied independent cascade model to this empirical Twitter diffusion network, and found it is proper to fit to the product information diffusion process. Using its network structure and PageRank measurement, we can identify influential nodes, and interpret the intrinsic connection between these influential nodes. Further, it is significant to consider the node’s background, such as interest, occupation, and country when identifying influential nodes. And it is discussed that the tweet content related to novel technology may attract more participation in ordinary users.

Keywords

Social network Information diffusion Independent cascade model Social influence 

Notes

Acknowledgements

Research was sponsored in part by the National Social Science Fund Project “Study on dynamic optimization mechanism of information diffusion in social networks”, Agreement Number 15CTQ029.

References

  1. 1.
    Kaplan, A. M., & Haenlein, M. (2012). Social media: Back to the roots and back to the future. Journal of Systems and Information Technology, 14(2), 101–104.CrossRefGoogle Scholar
  2. 2.
    Richardson, M., & Domingos, P. (2002). Mining knowledge-sharing sites for viral marketing. In The eighth ACM SIGKDD international conference (pp. 61–70). New York, New York, USA: ACM.Google Scholar
  3. 3.
    Libai, B., Muller, E., & Peres, R. (2013). Decomposing the value of word-of-mouth seeding programs: Acceleration versus expansion. Journal of Marketing Research, 50, 161–176.CrossRefGoogle Scholar
  4. 4.
    Guille, A., Hacid, H., Favre, C., & Zighed, D. A. (2013). Information diffusion in online social networks: A survey. ACM SIGMOD Record, 42(2), 17–28.CrossRefGoogle Scholar
  5. 5.
    Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653.CrossRefGoogle Scholar
  6. 6.
    Leskovec, J., McGlohon, M., Faloutsos, C., & Glance, N. (2007). Patterns of cascading behavior in large blog graphs. In Presented at the 2007 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2007.Google Scholar
  7. 7.
    Yang, J., & Leskovec, J. (2010). Modeling information diffusion in implicit networks. In Presented at the 2010 IEEE 10th international conference on data mining (ICDM) (pp. 599–608). IEEE.Google Scholar
  8. 8.
    Khan, H. U., Daud, A., Ishfaq, U., Amjad, T., Aljohani, N., Abbasi, R. A., et al. (2017). Modelling to identify influential bloggers in the blogosphere: A survey. Computers in Human Behavior, 68(C), 64–82.CrossRefGoogle Scholar
  9. 9.
    Goldenberg, J., Libai, B., & Muller, E. (2001). Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12(3), 211–223.CrossRefGoogle Scholar
  10. 10.
    Akrouf, S., Meriem, L., Yahia, B., & Eddine, M. N. (2013). Social network analysis and information propagation: A case study using Flickr and YouTube networks. International Journal of Future Computer and Communication, 2(3), 246–252.CrossRefGoogle Scholar
  11. 11.
    Watts, D. J., & Dodds, P. S. (2007). Influentials, networks, and public opinion formation. Journal of Consumer Research, 34(4), 441–458.CrossRefGoogle Scholar
  12. 12.
    Yoganarasimhan, H. (2011). Impact of social network structure on content propagation: A study using YouTube data. Quantitative Marketing and Economics, 10(1), 111–150.CrossRefGoogle Scholar
  13. 13.
    Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media?. In Presented at the 19th international conference on World wide web (p. 591). New York, USA: ACM Press.Google Scholar
  14. 14.
    Albert, R., Jeong, H., & Barabási, A.-L. (1999). Internet: Diameter of the world-wide web. Nature, 401(6), 130–131.CrossRefGoogle Scholar
  15. 15.
    Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.CrossRefGoogle Scholar
  16. 16.
    Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.CrossRefGoogle Scholar
  17. 17.
    Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  18. 18.
    Li, Q., Kailkhura, B., Thiagarajan, J. J., Zhang, Z., & Varshney, P. K. (2017). Influential node detection in implicit social networks using multi-task Gaussian copula models. In Presented at the NIPS 2016 time series workshop (pp. 27–37), Barcelona.Google Scholar
  19. 19.
    Kimura, M., & Saito, K. (2006). Tractable models for information diffusion in social networks. In Presented at the European conference on principles of data mining and knowledge discovery. Berlin, Heidelberg: Springer.Google Scholar
  20. 20.
    Lu, F., Zhang, W., Shao, L., Jiang, X., Xu, P., & Jin, H. (2017). Scalable influence maximization under independent cascade model. Journal of Network and Computer Applications, 86, 15–23.CrossRefGoogle Scholar
  21. 21.
    Mei, Y., Zhao, W., & Yang, J. (2017). Influence maximization on twitter—A mechanism for effective marketing campaign. In Presented at the IEEE international conference on communication (pp. 1–6). IEEE.Google Scholar
  22. 22.
    Sela, A., Goldenberg, D., Ben-Gal, I., & Shmueli, E. (2017). Latent viral marketing, concepts and control methods. CoRR, cs.SI. arXiv:1704.01775.
  23. 23.
    Aral, S., & Walker, D. (2012). Identifying influential and susceptible members of social networks. Science, 337(6092), 337–341.CrossRefGoogle Scholar
  24. 24.
    Katona, Z., Zubcsek, P. P., & Sarvary, M. (2011). Network effects and personal influences: The diffusion of an online social network. Journal of Marketing Research, 48(3), 425–443.CrossRefGoogle Scholar
  25. 25.
    Smith, M., Ceni, A., Milic-Frayling, N., Shneiderman, B., Mendes Rodrigues, E., Leskovec, J., & Dunne, C. (2010). NodeXL: A free and open network overview, discovery and exploration add-in for Excel 2007/2010/2013/2016, from the Social Media Research Foundation. https://www.smrfoundation.org. Accessed 14 Mar 2018.
  26. 26.
    Connolly, T., & Schelling, T. C. (1979). Micromotives and macrobehavior. Administrative Science Quarterly, 24(3), 500.CrossRefGoogle Scholar
  27. 27.
    Kimura, M., Saito, K., Nakano, R., & Motoda, H. (2009). Extracting influential nodes on a social network for information diffusion. Data Mining and Knowledge Discovery, 20(1), 70–97.CrossRefGoogle Scholar
  28. 28.
    Kimura, M., Saito, K., Nakano, R., & Motoda, H. (2009). Finding influential nodes in a social network from information diffusion data. In Social computing and behavioral modeling (pp. 1–8). Boston, MA: Springer US.Google Scholar
  29. 29.
    Hinz, O., Skiera, B., Barrot, C., & Becker, J. U. (2011). Seeding strategies for viral marketing: An empirical comparison. Journal of Marketing, 75(6), 55–71.CrossRefGoogle Scholar
  30. 30.
    Ghosh, R., & Lerman, K. (2011). Parameterized centrality metric for network analysis. Physical Review E, 83(6), 066118.CrossRefGoogle Scholar
  31. 31.
    Muller, E., & Peres, R. (2017). The effect of social networks structure on innovation performance: A review and directions for research. http://www.hitechmarkets.net/files/MullerPeres2017.pdf. Accessed 12 Mar 2018.
  32. 32.
    Van den Bulte, C., & Wuyts, S. (2007). Social networks and marketing. MSI relevant knowledge series. Cambridge, MA: Marketing Science Institute.Google Scholar
  33. 33.
    Sheth, J. N. (1974). A theory of family buying decisions. In J. N. Sheth (Ed.), Models of buyer behavior: Conceptual, quantitative, and empirical (pp. 17–33). New York: Harper & Row.Google Scholar
  34. 34.
    De Bruyn, A., & Lilien, G. L. (2008). A multi-stage model of word-of-mouth influence through viral marketing. International Journal of Research in Marketing, 25(3), 151–163.CrossRefGoogle Scholar
  35. 35.
    Scholz, M., Dorner, V., Landherr, A., & Probst, F. (2013). Awareness, interest, and final decision: The effects of user-and marketer-generated content on consumers’ purchase decisions. In Presented at the thirty fourth international conference on information systems (pp. 1–17). Milan: Nomos.Google Scholar
  36. 36.
    Acemoglu, D., & Ozdaglar, A. (2010). Opinion dynamics and learning in social networks. Dynamic Games and Applications, 1(1), 3–49.CrossRefGoogle Scholar
  37. 37.
    Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 1–39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuhan University of Science and TechnologyWuhanChina
  2. 2.Washburn UniversityTopekaUSA

Personalised recommendations