Advertisement

Finite Third-Order Gradient Elastoplasticity and Thermoplasticity

  • Jörg Christian ReiherEmail author
  • Albrecht Bertram
Article
  • 7 Downloads

Abstract

A general format for a third-order gradient elasto-plasticity under finite deformations is suggested. The basic assumptions are the principle of Euclidean invariance and the isomorphy of the elastic behaviour before and after yielding. The format allows for isotropy and anisotropy. Both the elastic and the plastic laws include the second and third deformation gradient. The starting point is an objective expression for the stress power. By applying the Clausius-Duhem inequality, necessary and sufficient conditions for thermodynamic consistency are derived for this format.

Keywords

Second strain gradient Finite gradient plasticity Thermodynamics 

Mathematics Subject Classification

74C15 74A30 

Notes

Acknowledgements

Jörg Christian Reiher’s position as a PhD-student has been funded by the German Science Foundation, Graduiertenkolleg 1554: Micro-Macro-Interactions in structured Media and Particle Systems.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aifantis, E.: The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987) CrossRefzbMATHGoogle Scholar
  2. 2.
    Aifantis, E.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992) CrossRefzbMATHGoogle Scholar
  3. 3.
    Askes, H., Suiker, A.S.J., Sluys, L.J.: Classification of higher-order strain-gradient models-linear analysis. Arch. Appl. Mech. 72, 171–188 (2002) ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Bertram, A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 52, 353–374 (1998) zbMATHGoogle Scholar
  5. 5.
    Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction. Springer, Berlin (2005, 2008, 2012) zbMATHGoogle Scholar
  6. 6.
    Bertram, A.: Finite gradient elasticity and plasticity: a constitutive mechanical framework. Contin. Mech. Thermodyn. 27(6), 1039–1058 (2015) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertram, A.: Finite gradient elasticity and plasticity: a constitutive thermodynamical framework. Contin. Mech. Thermodyn. 28, 869–883 (2016) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bertram, A. (ed.): Compendium on Gradient Materials, TU Berlin, December 2017, 237 pages.  https://doi.org/10.13140/RG.2.2.36769.51045
  9. 9.
    Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Contin. Mech. Thermodyn. 26, 269–286 (2014) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bertram, A., Krawietz, K.: On the introduction of thermoplasticity. Acta Mech. 223(10), 2257–2268 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cardona, J.-M., Forest, S., Sievert, R.: Towards a theory of second grade thermoelasticity. Extr. Math. 14, 127–140 (1999) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cermelli, P., Gurtin, M.E.: Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int. J. Solids Struct. 39(26), 6281–6309 (2002) CrossRefzbMATHGoogle Scholar
  13. 13.
    Dahlberg, C.F.O., Faleskog, J.: Strain gradient plasticity analysis of the influence of grain size and distribution on the yield strength in polycrystals. Eur. J. Mech. A, Solids 44, 1–16 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    Dillon, O.W., Kratochvil, J.: A strain gradient theory of plasticity. Int. J. Solids Struct. 6, 1513–1533 (1970) CrossRefzbMATHGoogle Scholar
  15. 15.
    Fleck, N.A., Hutchinson, J.W.: A Phenomenological Theory for Strain Gradient Effects in Plasticity (1993) CrossRefzbMATHGoogle Scholar
  16. 16.
    Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001) ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Forest, S., Aifantis, E.C.: Some links between recent gradient thermoelastoplasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010) CrossRefzbMATHGoogle Scholar
  18. 18.
    Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52(6), 1379–1406 (2003) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gurtin, M.E.: On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int. J. Plast. 19, 47–90 (2003) CrossRefzbMATHGoogle Scholar
  20. 20.
    Makvandi, R., Reiher, J.C., Bertram, A., Juhre, D.: Isogeometric analysis of first and second strain gradient elasticity. Comput. Mech. 61, 351 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965) CrossRefGoogle Scholar
  22. 22.
    Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968) CrossRefzbMATHGoogle Scholar
  23. 23.
    Perzyna, P.: A gradient theory of rheological materials with internal structural changes. Arch. Mech. 23(6), 845–850 (1971) MathSciNetzbMATHGoogle Scholar
  24. 24.
    Polizzotto, C.: Surface effects, boundary conditions and evolution laws within second strain gradient plasticity. Int. J. Plast. 60, 197–216 (2014) CrossRefGoogle Scholar
  25. 25.
    Reiher, J.C., Bertram, A.: Finite third-order gradient elasticity and thermoelasticity. J. Elast. 133, 223 (2018).  https://doi.org/10.1007/s10659-018-9677-2 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2) (2017) Google Scholar
  27. 27.
    Silhavy, M., Kratochvil, J.: A theory of inelastic behavior of materials, part I & II. Arch. Ration. Mech. Anal. 65(2), 97–152 (1977) CrossRefzbMATHGoogle Scholar
  28. 28.
    Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Toupin, R.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zbib, H.M., Aifantis, E.C.: On the postlocalization behavior of plastic deformation, mechanics of microstructures. MM Report No. I, Michigan Technological University, Houghton, Michigan (1987) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für MechanikOtto-von-Guericke-Univ.MagdeburgGermany
  2. 2.Institut für MechanikTU BerlinBerlinGermany

Personalised recommendations