Journal of Elasticity

, Volume 135, Issue 1–2, pp 183–235 | Cite as

Continuum Mechanics as a Computable Coarse-Grained Picture of Molecular Dynamics

  • Antonio DiCarloEmail author


In this paper, I determine the minimum amount of information that continuum mechanics needs to obtain from Newtonian molecular dynamics, in order to avail itself of stress-strain responses uniformly valid for a vast range of macroscopic regimes, being quantitatively determined by microscopic physical properties. Described from the opposite, bottom-up point of view, the procedure I put forward uses the basic kinematic and dynamical machinery of continuum mechanics to upscale molecular dynamics to the macroscopic level in a practicable and efficient way.


Molecular dynamics Continuum mechanics Space-time averaging Streaming velocity Thermal velocity Stress Hierarchical multiscale modelling 

Mathematics Subject Classification

82C22 82C21 74A25 74A10 82C80 



This paper is the provisional completion of ruminations and lucubrations that started about a decade ago and intensified in the last two-three years. I wish to acknowledge my debt towards my former students and postdocs, M. Ribezzi-Crivellari, M. Paoluzzi and M. Minozzi, who collaborated with me on this project in the now remote years of its long incubation. Without the ongoing interactions—sometimes harsh, always instructive—with S. Bonella, G. Ciccotti, M. Ferrario, and P. Podio-Guidugli, my ideas would have never developed to the present stage—much less would they have been written down.


  1. 1.
    Abhyankar, S.S., Christensen, C.: Semidirect products: \(x \mapsto a x - b\) as a first example. Math. Mag. 75(4), 284–289 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Admal, N.C., Tadmor, E.B.: A unified interpretation of stress in molecular systems. J. Elast. 100(1), 63–143 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alder, B.J.: Berni J. Alder, interview. In: Mac Kernan, D. (ed.) SIMU Challenges in Molecular Simulations: Bridging the Length- and Timescales Gap, vol. 4, pp. 15–58. Centre Européen de Calcul Atomique et Moléculaire, Écublens (2002). Google Scholar
  4. 4.
    Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72(4), 2384–2393 (1980). ADSCrossRefGoogle Scholar
  5. 5.
    Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Nonholonomic dynamics. Not. Am. Math. Soc. 52(3), 324–333 (2005) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of systems with long-range interactions. Physica A 389(20), 4389–4405 (2010). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Capriz, G.: On ephemeral continua. Phys. Mesomech. 11(5–6), 285–298 (2008) CrossRefGoogle Scholar
  8. 8.
    Capriz, G., Giovine, P.: Classes of ephemeral continua. Math. Methods Appl. Sci. 41(3), 1175–1196 (2018). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cauchy, A.L.: Exercises de Mathématiques—Seconde Année. Chez de Bure Frères, Libraires du Roi et de la Bibliothèque du Roi, Paris, Rue Serpente, 7 (1827) Google Scholar
  10. 10.
    Cleveland, C.L.: New equations of motion for molecular dynamics systems that change shape. J. Chem. Phys. 89(8), 4987–4993 (1988). ADSCrossRefGoogle Scholar
  11. 11.
    DiCarlo, A.: A major serendipitous contribution to continuum mechanics. Mech. Res. Commun. 93, 41–46 (2018). CrossRefGoogle Scholar
  12. 12.
    Fisher, M.E.: The free energy of a macroscopic system. Arch. Ration. Mech. Anal. 17(5), 377–410 (1964). MathSciNetCrossRefGoogle Scholar
  13. 13.
    Flannery, M.R.: d’Alembert-Lagrange analytical dynamics for nonholonomic systems. J. Math. Phys. 52(3), 032,705 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Irving, J.H., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18(6), 817–829 (1950). ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lamé, G.: Leçons sur la Théorie Mathématique de l’Elasticité des Corps Solides, 1 edn. Bachelier, Imprimeur-Libraire du Bureau des Longitudes et de l’École Polytechnique, Paris, Quai des Augustins, 55 (1852) Google Scholar
  16. 16.
    Lehoucq, R.B., Von Lilienfeld-Toal, A.: Translation of Walter Noll’s “Derivation of the fundamental equations of continuum thermodynamics from statistical mechanics”. J. Elast. 100(1), 5–24 (2010). CrossRefzbMATHGoogle Scholar
  17. 17.
    Li, S., Tong, Q.: A concurrent multiscale micromorphic molecular dynamics. J. Appl. Phys. 117(15), 154,303 (2015). CrossRefGoogle Scholar
  18. 18.
    Li, S., Urata, S.: An atomistic-to-continuum molecular dynamics: theory, algorithm, and applications. Comput. Methods Appl. Mech. Eng. 306, 452–478 (2016). ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Murdoch, A.I.: A corpuscular approach to continuum mechanics: basic considerations. Arch. Ration. Mech. Anal. 88(4), 291–321 (1985). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Murdoch, A.I.: A critique of atomistic definitions of the stress tensor. J. Elast. 88(2), 113–140 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Murdoch, A.I.: On molecular modelling and continuum concepts. J. Elast. 100(1), 33–61 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Murdoch, A.I.: Physical Foundations of Continuum Mechanics. Cambridge University Press, Cambridge (2012) CrossRefzbMATHGoogle Scholar
  23. 23.
    Murdoch, A.I.: A personal appreciation of Walter Noll. J. Elast. (2019, this issue).
  24. 24.
    Noll, W.: Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der Statistischen Mechanik. J. Ration. Mech. Anal. 4, 627–646 (1955). MathSciNetzbMATHGoogle Scholar
  25. 25.
    Parrinello, M., Rahman, A.: Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980). ADSCrossRefGoogle Scholar
  26. 26.
    Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981). ADSCrossRefGoogle Scholar
  27. 27.
    Passerone, D., Tosatti, E., Chiarotti, G.L., Ercolessi, F.: Variable-curvature-slab molecular dynamics as a method to determine surface stress. Phys. Rev. B 59, 7687–7696 (1999). ADSCrossRefGoogle Scholar
  28. 28.
    Podio-Guidugli, P.: On (Andersen-)Parrinello-Rahman molecular dynamics, the related metadynamics, and the use of the Cauchy-Born rule. J. Elast. 100(1), 145–153 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ray, J.R.: Nonholonomic constraints. Am. J. Phys. 34(12), 1202–1203 (1966). Erratum: Am. J. Phys. 34, 406 (1966) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ray, J.R.: Nonholonomic constraints and Gauss’ principle of least constraint. Am. J. Phys. 40(1), 179–188 (1972). ADSCrossRefGoogle Scholar
  31. 31.
    Ray, J.R., Rahman, A.: Statistical ensembles and molecular dynamics studies of anisotropic solids. J. Chem. Phys. 80(9), 4423–4428 (1984). ADSCrossRefGoogle Scholar
  32. 32.
    Ribarsky, M.W., Landman, U.: Dynamical simulations of stress, strain, and finite deformations. Phys. Rev. B 38, 9522–9537 (1988). ADSCrossRefGoogle Scholar
  33. 33.
    Rossi, G.C., Testa, M.: The stress tensor in thermodynamics and statistical mechanics. J. Chem. Phys. 132(7), 074902 (2010). ADSCrossRefGoogle Scholar
  34. 34.
    Tadmor, E.B., Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press, Cambridge (2011) CrossRefzbMATHGoogle Scholar
  35. 35.
    Tartaglino, U., Tosatti, E., Passerone, D., Ercolessi, F.: Bending strain-driven modification of surface reconstructions: Au(111). Phys. Rev. B 65, 241406 (2002). ADSCrossRefGoogle Scholar
  36. 36.
    Tong, Q., Li, S.: From molecular systems to continuum solids: a multiscale structure and dynamics. J. Chem. Phys. 143(6), 064101 (2015). ADSCrossRefGoogle Scholar
  37. 37.
    Torres-Sánchez, A., Vanegas, J.M., Arroyo, M.: Geometric derivation of the microscopic stress: a covariant central force decomposition. J. Mech. Phys. Solids 93, 224–239 (2016). ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Ulz, M.H.: Comments on a continuum-related Parrinello-Rahman molecular dynamics formulation. J. Elast. 113(1), 93–112 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Urata, S., Li, S.: A multiscale model for amorphous materials. Comput. Mater. Sci. 135, 64–77 (2017). CrossRefGoogle Scholar
  40. 40.
    Wentzcovitch, R.M.: Invariant molecular-dynamics approach to structural phase transitions. Phys. Rev. B 44, 2358–2361 (1991). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CECAM–IT–SIMUL NodeRomeItaly

Personalised recommendations