A Stroh Formalism for Small-on-Large Problems in Spherical Polar Coordinates

  • P. A. MartinEmail author


The governing equations for small-on-large analysis of an incompressible hyperelastic solid are reduced to a coupled system of six first-order ordinary differential equations with respect to the radial coordinate in spherical polar coordinates. This reduction to Stroh form does not assume a particular form for the strain-energy function.


Nonlinear elasticity Small-on-large Incremental equations 

Mathematics Subject Classification (2010)

74B15 74B20 35A09 35J57 



I thank Michel Destrade for advice and pointers to the literature, and an anonymous reviewer for constructive comments.

Supplementary material

10659_2019_9730_MOESM1_ESM.pdf (142 kb)
A Stroh formalism for small-on-large problems in spherical polar coordinates (PDF 142 kB)


  1. 1.
    Ciarletta, P.: Buckling instability in growing tumor spheroids. Phys. Rev. Lett. 110, 158102 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    deBotton, G., Bustamante, R., Dorfmann, A.: Axisymmetric bifurcations of thick spherical shells under inflation and compression. Int. J. Solids Struct. 50, 403–413 (2013) CrossRefGoogle Scholar
  3. 3.
    Destrade, M., Ní Annaidh, A., Coman, C.D.: Bending instabilities of soft biological tissues. Int. J. Solids Struct. 46, 4322–4330 (2009) CrossRefzbMATHGoogle Scholar
  4. 4.
    Fu, Y.B.: Perturbation methods and nonlinear stability analysis. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity, pp. 345–391. Cambridge University Press, Cambridge (2001) CrossRefGoogle Scholar
  5. 5.
    Goriely, A.: The Mathematics and Mechanics of Biological Growth. Springer, New York (2017) CrossRefzbMATHGoogle Scholar
  6. 6.
    Goriely, A., Destrade, M., Ben Amar, M.: Instabilities in elastomers and in soft tissues. Q. J. Mech. Appl. Math. 59, 615–630 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Green, A.E., Shield, R.T.: Finite elastic deformation of incompressible isotropic bodies. Proc. R. Soc. A 202, 407–419 (1950) ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Green, A.E., Zerna, W.: Theoretical Elasticity, 2nd edn. Dover, New York (1992). Reprint of 1968 original zbMATHGoogle Scholar
  9. 9.
    Gunderson, A.M., Daniel, T.D., Marston, P.L., Isakson, M.J.: Observation and modeling of acoustic scattering from a rubber spherical shell. J. Acoust. Soc. Am. 143, 3036–3046 (2018) ADSCrossRefGoogle Scholar
  10. 10.
    Haughton, D.M., Chen, Y-c.: On the eversion of incompressible elastic spherical shells. Z. Angew. Math. Phys. 50, 312–326 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Haughton, D.M., Ogden, R.W.: On the incremental equations in non-linear elasticity—II. Bifurcation of pressurized spherical shells. J. Mech. Phys. Solids 26, 111–138 (1978) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Horgan, C.O.: Equilibrium solutions for compressible nonlinearly elastic materials. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity, pp. 135–159. Cambridge University Press, Cambridge (2001) CrossRefGoogle Scholar
  13. 13.
    Kuo, K.A., Hunt, H.E.M., Lister, J.R.: Small oscillations of a pressurized, elastic, spherical shell: model and experiments. J. Sound Vib. 359, 168–178 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    Martin, P.A.: Multiple Scattering. Cambridge University Press, Cambridge (2006) CrossRefGoogle Scholar
  15. 15.
    Norris, A.N., Shuvalov, A.L.: Elastodynamics of radially inhomogeneous spherically anisotropic elastic materials in the Stroh formalism. Proc. R. Soc. A 468, 467–484 (2012) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ogden, R.W.: Non-Linear Elastic Deformations. Dover, New York (1997). Corrected reprint of 1984 original Google Scholar
  17. 17.
    Riccobelli, D., Ciarletta, P.: Shape transitions in a soft incompressible sphere with residual stresses. Math. Mech. Solids 23, 1507–1524 (2018) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shearer, T.: Waves in nonlinear elastic media with inhomogeneous pre-stress. PhD thesis, University of Manchester (2013) Google Scholar
  19. 19.
    Shearer, T., Parnell, W.J., Abrahams, I.D.: Antiplane wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic media. Proc. R. Soc. A 471, 20150450 (2015). Correction, 474, 20180268, 2018 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Steigmann, D.J.: Finite Elasticity Theory. Oxford University Press, Oxford (2017) CrossRefzbMATHGoogle Scholar
  21. 21.
    Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3, pp. 1–579. Springer, Berlin (1965) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsColorado School of MinesGoldenUSA

Personalised recommendations