Advertisement

Journal of Elasticity

, Volume 135, Issue 1–2, pp 91–115 | Cite as

Interactions in a Multi-scale Representation of Sparse Media: From Mechanics to Thermodynamics

  • Gianfranco Capriz
  • Paolo Maria MarianoEmail author
Article
  • 40 Downloads

Abstract

We develop further a discrete-to-continuum approach to sparse media for which we do not grant the common axiom of permanent identification of the material elements. After refining our previous work on this topic, we focus our attention on the identification of stresses and self-actions at continuum scale in terms of the molecular interactions. Moreover, we introduce and discuss a notion of tensorial temperature by considering a grand canonical statistical ensemble constituted by molecules freely flowing in and out a control volume.

Keywords

Continuum thermodynamics Multi-scale models Invariance Kinetic theory Granular matter Discrete-to-continuum schemes 

Mathematics Subject Classification

05C38 15A15 05A15 15A18 

Notes

Acknowledgement

This work has been developed within the programs of the research group in ‘Theoretical Mechanics’ of the “Centro di Ricerca Matematica Ennio De Giorgi” of the Scuola Normale Superiore in Pisa. The support of GNFM-INDAM is acknowledged.

References

  1. 1.
    Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980) ADSCrossRefGoogle Scholar
  2. 2.
    Bacci, M., Mariano, P.M.: Protein dynamics: an approach based on the Cauchy-Born rule. Physica E 61, 69–82 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    Blumenfeld, R., Edwards, S.F.: On granular stress statistics: compactivity, angoricity, and some open issues. J. Phys. Chem. 113, 3981–3987 (2009) CrossRefGoogle Scholar
  4. 4.
    Brocato, M., Capriz, G.: Clockwork, ephemeral and hybrid continua. Phys. Mesomech. 14, 124–144 (2011) Google Scholar
  5. 5.
    Capriz, G.: Elementary preamble to a theory of granular gases. Rend. Mat. Univ. Padova 110, 179–198 (2003) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Capriz, G.: Pseudofluids. In: Capriz, G., Mariano, P.M. (eds.) Material Substructures in Complex Bodies: From Atomic Level to Continuum, pp. 238–261. Elsevier, Amsterdam (2006) Google Scholar
  7. 7.
    Capriz, G.: A quest for an ‘extended’ continuum mechanics. Note Mat. 27, 27–41 (2007) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Capriz, G.: On ephemeral continua. Phys. Mesomech. 11, 285–298 (2008) CrossRefGoogle Scholar
  9. 9.
    Capriz, G., Giovine, P.: Hypocontinua. In: Albers, B., Kuczma, M. (eds.) Continuum Media with Microstructure 2, pp. 23–43. Springer, Berlin (2016) CrossRefGoogle Scholar
  10. 10.
    Capriz, G., Giovine, P.: Classes of ephemeral continua. Math. Methods Appl. Sci. 43, 1175–1196 (2017) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Capriz, G., Mariano, P.M.: Objective fluxes in a multiscale continuum description of sparse medium dynamics. Physica A 415, 354–365 (2014) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Capriz, G., Mariano, P.M.: Multi-scale kinetic description of granular clusters: invariance, balance, and temperature. Contin. Mech. Thermodyn. 30, 1323–1342 (2018) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Capriz, G., Mazzini, G.: Invariance and balance in continuum mechanics. In: Nonlinear Analysis and Continuum Mechanics, pp. 27–35. Springer, New York (1998) CrossRefGoogle Scholar
  14. 14.
    Capriz, G., et al. (eds.): Whence Boundary Conditions in Continuum Physics? Accademia Nazionale dei Lincei, Roma (2004) Google Scholar
  15. 15.
    Chipot, M.M.: Elements of Nonlinear Analysis. Birkhäuser, Basel (2000) CrossRefzbMATHGoogle Scholar
  16. 16.
    de Fabritiis, C., Mariano, P.M.: Geometry of interactions in complex bodies. J. Geom. Phys. 54, 301–323 (2005) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E, W., Huang, Z.: Matching conditions in atomistic-continuum modeling of materials. Phys. Rev. Lett. 87(1–4), 135501 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    E, W., Ming, P.: Cauchy-Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183, 241–297 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E, W., Ming, P.: Cauchy-Born rule and the stability of crystalline solids: dynamic problems. Acta Math. Appl. Sin. Engl. Ser. 529, 529–550 (2007) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ericksen, J.L.: On nonlinear elasticity theory of crystal defects. Int. J. Plast. 14, 9–24 (1998) CrossRefzbMATHGoogle Scholar
  21. 21.
    Goldhirsch, I.: Theory of rapid granular flows. In: Mehta, A. (ed.) Granular Physics, pp. 176–208. Cambridge University Press, Cambridge (2007) CrossRefGoogle Scholar
  22. 22.
    Grmela, M.: Externally driven macroscopic systems: dynamics versus thermodynamics. J. Stat. Phys. 166, 282–316 (2017) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Henkes, S., Chakraborty, B.: Statistical mechanics framework for static granular matter. Phys. Rev. E 79, 061301 (2009) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Henkes, S., O’Hern, C.S., Chakraborty, B.: Entropy and temperature of a static granular assembly: an ab initio approach. Phys. Rev. Lett. 99, 038002 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985) ADSCrossRefGoogle Scholar
  26. 26.
    Irving, J.H., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Jenkins, J.T.: Boundary conditions for rapid granular flow: flat, frictional walls. J. Appl. Mech. 114, 120–127 (1992) CrossRefzbMATHGoogle Scholar
  28. 28.
    Lehoucq, R.B., von Lilienfeld-Tonal, A.: Translation of Walter Noll’s “Derivation of the fundamental equations of continuum thermodynamics from statistical mechanics”. J. Elast. 100, 5–24 (2010) CrossRefzbMATHGoogle Scholar
  29. 29.
    Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38, 1–93 (2002) CrossRefGoogle Scholar
  30. 30.
    Mariano, P.M.: Mechanics of material mutations. Adv. Appl. Mech. XX, 1–92 (2014) Google Scholar
  31. 31.
    Mariano, P.M., Stazi, F.L.: Strain localization in elastic microcracked bodies. Comput. Methods Appl. Mech. Eng. 190, 5657–5677 (2001) ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Memarnahavandi, A., Larsson, F., Runesson, K.: A goal-oriented adaptive procedure for the quasi-continuum method with cluster approximation. Comput. Mech. 55, 617–642 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Murdoch, A.I.: A corpuscular approach to continuum mechanics: basic considerations. Arch. Ration. Mech. Anal. 88, 291–321 (1985) MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Murdoch, A.I.: Physical Foundations of Continuum Mechanics. Cambridge University Press, Cambridge (2012) CrossRefzbMATHGoogle Scholar
  35. 35.
    Naudts, J., van der Straeten, E.: The grand canonical ensemble in generalized thermostatistics. J. Stat. Mech. Theory Exp. 2004, P12002 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Noll, W.: Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistichen Mechanik. J. Ration. Mech. Anal. 4, 627–646 (1955) zbMATHGoogle Scholar
  37. 37.
    Noll, W.: La Mécanique classique, basée sur une axiome d’objectivité. In: La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles, Colloque International, Paris, 1959, pp. 47–56. Gauthier-Villars, Paris (1963) Google Scholar
  38. 38.
    Nosé, S.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984) ADSCrossRefGoogle Scholar
  39. 39.
    Oakeshott, R.B.S., Edwards, S.F.: Theory of powders. Physica A 157, 1080–1090 (1989) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981) ADSCrossRefGoogle Scholar
  41. 41.
    Peters, M.H.: Completing Irving and Kirkwood’s molecular theory of transport processes: nonequilibrium entropy conservation. Ind. Eng. Chem. Res. 48, 166–171 (2009) CrossRefGoogle Scholar
  42. 42.
    Pitteri, M.: Continuum equations of balance in classical statistical mechanics. Arch. Ration. Mech. Anal. 94, 291–305 (1986). Corrigendum published as “Correction of an error in my paper: “Continuum equations of balance in classical statistical mechanics” [Arch. Rational Mech. Anal. 94 (1986), no. 4, 291–305]”. Arch. Rational Mech. Anal. 100, 315–316 (1988) MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Pitteri, M.: On a statistical-kinetic model for generalized continua. Arch. Ration. Mech. Anal. 111, 99–120 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Puckett, J.G., Daniels, K.E.: Equilibrating temperaturelike variables in jammed granular subsystems. Phys. Rev. Lett. 110, 058001 (2013) ADSCrossRefGoogle Scholar
  45. 45.
    Ray, J.R., Rahman, A.: Statistical ensemble and molecular dynamics studies of anisotropic solids. II. J. Chem. Phys. 82, 4243–4247 (1985) ADSCrossRefGoogle Scholar
  46. 46.
    Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R., Ortiz, M.: An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. J. Mech. Phys. Solids 47, 611–647 (1999) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Stackgold, I.: The Cauchy relations in a molecular theory of elasticity. Q. Appl. Math. 8, 169–186 (1950) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Tadmor, E.B., Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press, Cambridge (2011) CrossRefzbMATHGoogle Scholar
  49. 49.
    Truesdell, C.A., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Treated as a Branch of Rational Mechanics. Academic Press, New York (1980) Google Scholar
  50. 50.
    Ulz, M.H.: A multiscale molecular dynamics method for isothermal dynamic problems using the seamless heterogeneous multiscale method. Comput. Methods Appl. Mech. Eng. 295, 510–524 (2015) ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Wurm, P., Ulz, M.H.: A stochastic approximation approach to improve the convergence behavior of hierarchical atomistic-to-continuum multiscale models. J. Mech. Phys. Solids 95, 480–500 (2016) ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Xu, M., Gracie, R., Belytschko, T.: A continuum-to-atomistic bridging domain method for composite lattices. Int. J. Numer. Methods Eng. 81, 1635–1658 (2010) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica, Università di PisaAccademia dei LinceiRomeItaly
  2. 2.DICeAUniversità di FirenzeFirenzeItaly

Personalised recommendations