Advertisement

Journal of Elasticity

, Volume 135, Issue 1–2, pp 117–148 | Cite as

“Reality” and Representation in Mechanics: The Legacy of Walter Noll

  • Gianpietro Del PieroEmail author
Article
  • 78 Downloads

Abstract

The foundations of the mechanics of generalized continua are revisited in the light of the theoretical progress made in the last decades. The paper includes a summary of the scientific activity of W. Noll, to whom a large part of this progress is due.

Keywords

Foundations of mechanics Generalized continua Two-scale deformations Reference frames 

Mathematics Subject Classification

74AXX 74A05 74A10 74A20 74A60 74C15 

Notes

References

  1. 1.
    Aifantis, E.C.: On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol. 106, 326–330 (1984) CrossRefGoogle Scholar
  2. 2.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\varGamma \)-convergence. Commun. Pure Appl. Math. 43, 999–1036 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barroso, A.C., Matias, J., Morandotti, M., Owen, D.R.: Second-order structured deformations: relaxation, integral representation and applications. Arch. Ration. Mech. Anal. 225, 1025–1072 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cauchy, A.-L.: Sur l’équilibre et le mouvement intérieur des corps considérés comme des masses continues. Œuvres complètes Sér. 9(2), 342–369 (1829) MathSciNetGoogle Scholar
  5. 5.
    Choksi, R., Fonseca, I.: Bulk and interfacial energy densities for structured deformations of continua. Arch. Ration. Mech. Anal. 138, 37–103 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coleman, B.D., Noll, W.: An approximation theorem for functionals with applications in continuum mechanics. Arch. Ration. Mech. Anal. 6, 97–112 (1960) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Del Piero, G.: The energy of a one-dimensional structured deformation. Math. Mech. Solids 6, 387–408 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Del Piero, G.: On the method of virtual power in continuum mechanics. J. Mech. Mater. Struct. 4, 281–292 (2009) CrossRefGoogle Scholar
  10. 10.
    Del Piero, G.: Nonclassical continua, pseudobalance, and the law of action and reaction. Math. Mech. Complex Syst. 2, 71–107 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Del Piero, G.: On the decomposition of the deformation gradient in plasticity. J. Elast. 131, 111–124 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Del Piero, G.: An axiomatic framework for the mechanics of generalized continua. Rend. Lincei Mat. Appl. 29, 31–61 (2018) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Del Piero, G.: The variational structure of classical plasticity. Math. Mech. Complex Syst. 6, 137–180 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Del Piero, G., Owen, D.R.: Structured deformations of continua. Arch. Ration. Mech. Anal. 124, 99–155 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Deseri, L., Owen, D.R.: Toward a field theory for elastic bodies undergoing disarrangements. J. Elast. 70, 197–236 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fichera, G.: I dificili rapporti tra l’analisi funzionale e la fisica matematica. Rend. Semin. Mat. Univ. Padova 68, 245–259 (1982) Google Scholar
  17. 17.
    Fichera, G.: Sul principio della memoria evanescente. Rend. Mat. Accad. Lincei, Suppl. 9(1), 161–170 (1990) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory—Part II: tensorial plastic multiplier. J. Mech. Phys. Solids 57, 1045–1057 (2009) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: théorie du second gradient. J. Méc. 12, 235–274 (1973) zbMATHGoogle Scholar
  21. 21.
    Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973) CrossRefzbMATHGoogle Scholar
  22. 22.
    Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1404 (2004) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gurtin, M.E., Martins, L.C.: Cauchy’s theorem in classical physics. Arch. Ration. Mech. Anal. 60, 305–324 (1976) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations. Int. J. Plast. 21, 2297–2318 (2005) CrossRefzbMATHGoogle Scholar
  25. 25.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) CrossRefGoogle Scholar
  26. 26.
    Halphen, B.: Nguyen Quoc Son, sur les matériaux standards généralisés. J. Méc. 14, 39–63 (1975) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Jammer, M.: Concepts of Force. Dover, Mineola (1999) Google Scholar
  28. 28.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, New York (1927). Reprinted by Dover Publisher, 1944 zbMATHGoogle Scholar
  29. 29.
    Mach, E.: Die Mechanik in ihrer Entwickelung historisch-kritisch dargestellt. Brockhaus, Leipzig (1883). 2nd English edn. “The Science of Mechanics. A Critical and Historical Account of Its Development”. The Open Court publisher, Chicago and London (1919) zbMATHGoogle Scholar
  30. 30.
    Maxwell, J.C.: On action at a distance. Proc. R. Inst. G. B. VII 44(54), 311–323 (1875). Also in: Scientific Papers 2, 311–323 Google Scholar
  31. 31.
    Maxwell, J.C.: Matter and Motion. Society for Promoting Christian Knowledge, London (1878). Dover edition, New York (1952) Google Scholar
  32. 32.
    Noll, W.: On the continuity of the solid and fluid states. J. Ration. Mech. Anal. 4, 3–81 (1955) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958). Reprinted in [38] MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics. In: The Axiomatic Method, with Special Reference to Geometry and Physics, Symposium at Berkeley, 1957, pp. 266–281. North-Holland, Amsterdam (1959). Reprinted in [38] Google Scholar
  35. 35.
    Noll, W.: La mécanique classique, basée sur un axiome d’objectivité. In: La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles, Symposium in Paris, 1959, pp. 47–56. Gauthier-Villars, Paris (1963). Reprinted in [38] Google Scholar
  36. 36.
    Noll, W.: A new mathematical theory of simple materials. Arch. Ration. Mech. Anal. 48, 1–50 (1972). Reprinted in [38] MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Noll, W.: Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Ration. Mech. Anal. 52, 62–92 (1973). Reprinted in [38] MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Noll, W.: The Foundations of Continuum Mechanics and Thermodynamics. Selected Papers of W. Noll. Springer, Berlin (1974) CrossRefzbMATHGoogle Scholar
  39. 39.
    Noll, W.: Continuum mechanics and geometric integration theory. In: Lawvere, F.W., Schnauel, S.H. (eds.) Categories in Continuum Physics. Springer Lecture Notes in Mathematics, vol. 1174, pp. 17–29. Springer, Berlin (1986) CrossRefGoogle Scholar
  40. 40.
    Noll, W.: Five contributions to natural philosophy (2004). http://repository.cmu.edu/math
  41. 41.
    Noll, W.: A frame-free formulation of elasticity. J. Elast. 83, 291–307 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Noll, W.: On the past and future of natural philosophy. J. Elast. 84, 1–11 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Noll, W., Virga, E.G.: Fit regions and functions of bounded variation. Arch. Ration. Mech. Anal. 102, 1–21 (1988) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Owen, D.R.: Structured deformations—part two. In: Del Piero, G., Owen, D.R. (eds.) Lecture Notes to the Ravello Summer School of the Gruppo Nazionale di Fisica Matematica. Quaderni dell’Istituto Nazionale di Alta Matematica, vol. 58 (2000) Google Scholar
  45. 45.
    Owen, D.R.: Elasticity with gradient-disarrangements: a multiscale geometrical perspective for strain-gradient theories of elasticity and plasticity. J. Elast. 127, 115–150 (2017) CrossRefzbMATHGoogle Scholar
  46. 46.
    Seguin, B.: Frame-free continuum thermomechanics. Ph.D. thesis, Carnegie Mellon University (2010) http://repository.cmu.edu/math/dissertations
  47. 47.
    Šilhavý, M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Ration. Mech. Anal. 90, 195–212 (1985) MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Šilhavý, M.: Mass, internal energy, and Cauchy’s equations in frame-indifferent thermodynamics. Arch. Ration. Mech. Anal. 107, 1–22 (1989) MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Truesdell, C.: Whence the law of moment of momentum? In: Essays in the History of Mechanics. Springer, New York (1968) CrossRefGoogle Scholar
  50. 50.
    Truesdell, C.: A First Course in Rational Continuum Mechanics, vol. 1, 2nd edn. Academic Press, Boston (1991) zbMATHGoogle Scholar
  51. 51.
    Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, Vol. III/3. Springer, Berlin (1965) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità di FerraraFerraraItaly
  2. 2.International Research Center M&MoCSCisterna di LatinaItaly

Personalised recommendations