Journal of Elasticity

, Volume 135, Issue 1–2, pp 237–260 | Cite as

Material Geometry

  • Marcelo EpsteinEmail author
  • Víctor Manuel Jiménez
  • Manuel de León


Walter Noll’s trailblazing constitutive theory of material defects in smoothly uniform bodies is recast in the language of Lie groupoids and their associated Lie algebroids. From this vantage point the theory is extended to non-uniform bodies by introducing the notion of singular material distributions and the physically cognate idea of graded uniformity and homogeneity.


Uniformity Homogeneity Groupoids Lie algebroids Singular distributions Stefan-Sussman theorem 

Mathematics Subject Classification

74A20 22A22 



  1. 1.
    Bilby, B.A.: Continuous distributions of dislocations. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics I, pp. 329–398. North-Holland, Amsterdam (1960) Google Scholar
  2. 2.
    Bloom, F.: Modern Differential Geometric Techniques in the Theory of Continuous Distributions of Dislocations. Lecture Notes in Mathematics, vol. 733. Springer, Berlin (1979) zbMATHGoogle Scholar
  3. 3.
    Elżanowski, M., Epstein, M., Śniatycki, J.: G-structures and material homogeneity. J. Elast. 23, 167–180 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Epstein, M., de León, M.: Geometrical theory of uniform Cosserat media. J. Geom. Phys. 26, 127–170 (1998) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Epstein, M., de León, M.: Homogeneity without uniformity: toward a mathematical theory of functionally graded materials. Int. J. Solids Struct. 37, 7577–7591 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Epstein, M., de León, M.: Material groupoids and algebroids. Math. Mech. Solids (2018). Google Scholar
  7. 7.
    Epstein, M., Segev, R.: Differentiable manifolds and the principle of virtual work in continuum mechanics. J. Math. Phys. 21, 1243–1245 (1980) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eshelby, J.D.: The continuum theory of lattice defects. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics 3, pp. 79–144. Elsevier, Amsterdam (1956) Google Scholar
  9. 9.
    Frank, F.C.: Crystal dislocations—elementary concepts and definitions. Philos. Mag. 42, 809–819 (1951) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jiménez, V.M., de León, M., Epstein, M.: Material distributions. Math. Mech. Solids (2018). Google Scholar
  11. 11.
    de Jiménez, V.M., León, M., Epstein, M.: Characteristic distribution: an application to material bodies. J. Geom. Phys. 127, 19–31 (2018) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley, New York (1963) zbMATHGoogle Scholar
  13. 13.
    Kondo, K.: Geometry of Elastic Deformation and incompatibility. RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by means of Geometry, Tokyo Gakujutsu Benken Fukyu-Kai 1/C, 361–373 (1955) Google Scholar
  14. 14.
    Kroener, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1959) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Notes Series, vol. 124. Cambridge University Press, Cambridge (1987) CrossRefzbMATHGoogle Scholar
  16. 16.
    Michor, P.W.: Topics in Differential Geometry. Am. Math. Soc., Providence (2008) zbMATHGoogle Scholar
  17. 17.
    Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Ration. Mech. Anal. 27, 1–32 (1967) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Segev, R.: Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27, 163–170 (1986) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, C-C.: On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Ration. Mech. Anal. 27, 33–94 (1967) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Weinstein, A.: Groupoids: unifying internal and external symmetry. Not. Am. Math. Soc. 43(7), 744–752 (1996) zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of CalgaryCalgaryCanada
  2. 2.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)MadridSpain

Personalised recommendations