Advertisement

Journal of Elasticity

, Volume 134, Issue 2, pp 127–148 | Cite as

History-Dependent Inequalities for Contact Problems with Locking Materials

  • Mircea SofoneaEmail author
Article
  • 56 Downloads

Abstract

We consider a class of history-dependent variational–hemivariational inequalities with constraints. Besides the unique solvability of the inequalities, we study the behavior of the solution with respect to the set of constraints and prove a continuous dependence result. The proof is based on various estimates, monotonicity arguments and the properties of the Clarke subdifferential. Then, we consider a mathematical model which describes the equilibrium of a locking material with memory, in contact with an obstacle. We comment the model and state its weak formulation, which is in a form of a history-dependent variational–hemivariational inequality for the displacement field. We prove the unique weak solvability of the model, then we use our abstract result to prove the continuous dependence of the solution with respect to the set of constraints. We apply this convergence result in the study of an optimization problem associated to the contact model.

Keywords

Variational–hemivariational inequality History-dependent operator Convergence result Locking material Memory term Frictionless contact Weak solution 

Mathematics Subject Classification

47J20 47J30 49J40 74M15 

Notes

References

  1. 1.
    Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. Wiley, Chichester (1984) zbMATHGoogle Scholar
  2. 2.
    Barboteu, M., Han, W., Migórski, S.: On numerical approximation of a variational–hemivariational inequality modeling contact problems for locking materials. Comput. Math. Appl., submitted for publication Google Scholar
  3. 3.
    Capatina, A.: Variational Inequalities Frictional Contact Problems. Advances in Mechanics and Mathematics, vol. 31. Springer, New York (2014) zbMATHGoogle Scholar
  4. 4.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) zbMATHGoogle Scholar
  5. 5.
    Demengel, F., Suquet, P.: On locking materials. Acta Appl. Math. 6, 185–211 (1986) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic/Plenum, Dordrecht/New York (2003) CrossRefzbMATHGoogle Scholar
  7. 7.
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum, Dordrecht/New York (2003) CrossRefzbMATHGoogle Scholar
  8. 8.
    Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976) CrossRefzbMATHGoogle Scholar
  9. 9.
    Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics, vol. 30. Am. Math. Soc., Providence (2002) zbMATHGoogle Scholar
  10. 10.
    Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications. Kluwer Academic, Dordrecht (1999) CrossRefzbMATHGoogle Scholar
  11. 11.
    Kamran, K., Barboteu, M., Han, W., Sofonea, M.: Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics. Math. Model. Numer. Anal. 48, 919–942 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988) CrossRefzbMATHGoogle Scholar
  13. 13.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics, vol. 31. SIAM, Philadelphia (2000) CrossRefzbMATHGoogle Scholar
  14. 14.
    Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013) CrossRefzbMATHGoogle Scholar
  15. 15.
    Migórski, S., Ogorzaly, J.: A variational–hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction. Acta Math. Sci. 37B, 1639–1652 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Dekker, New York (1995) zbMATHGoogle Scholar
  17. 17.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhäuser, Boston (1985) CrossRefzbMATHGoogle Scholar
  18. 18.
    Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993) CrossRefzbMATHGoogle Scholar
  19. 19.
    Prager, W.: On ideal-locking materials. Trans. Soc. Rheol. 1, 169–175 (1957) CrossRefzbMATHGoogle Scholar
  20. 20.
    Prager, W.: Elastic solids of limited compressibility. In: Proceedings of the 9th International Congress of Applied Mechanics, vol. 5, pp. 205–211 (1958). Brussels Google Scholar
  21. 21.
    Prager, W.: On elastic, perfectly locking materials. In: Görtler, H. (ed.) Applied Mechanics. Proceedings of the 11 th International Congress of Applied Mechanics, Munich, 1964, pp. 538–544. Springer, Berlin (1966) CrossRefGoogle Scholar
  22. 22.
    Sofonea, M.: A nonsmooth frictionless contact problem with locking materials. Anal. Appl. (2018).  https://doi.org/10.1142/S0219530518500215 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sofonea, M.: Convergence results and optimal control for a class of hemivariational inequalities. SIAM J. Math. Anal. 50(4), 4066–4086 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sofonea, M., Pătrulescu, F.: Penalization of history-dependent variational inequalities. Eur. J. Appl. Math. 25, 155–176 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sofonea, M., Matei, A.: History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22, 471–491 (2011) CrossRefzbMATHGoogle Scholar
  26. 26.
    Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012) CrossRefzbMATHGoogle Scholar
  27. 27.
    Sofonea, M., Migórski, S.: A class of history-dependent variational–hemivariational inequalities. Nonlinear Differ. Equ. Appl. 23, 38 (2016).  https://doi.org/10.1007/s00030-016-0391-0 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sofonea, M., Migórski, S.: Variational–Hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman & Hall/CRC Press, London/Boca Raton (2018) zbMATHGoogle Scholar
  29. 29.
    Sofonea, M., Migórski, S., Han, W.: A penalty method for history-dependent variational–hemivariational inequalities. Comput. Math. Appl. 75, 2561–2573 (2018) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sofonea, M., Xiao, Y.: Fully history-dependent quasivariational inequalities in contact mechanics. Appl. Anal. 95, 2464–2484 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Xiao, Y., Huang, N.: Generalized quasi-variational-like hemivariational inequalities. Nonlinear Anal. TMA 69, 637–646 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, Y., Xiao, Y., Wang, X., Je Cho, Y.: Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems. J. Nonlinear Sci. Appl. 9, 1178–1192 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zeidler, E.: Nonlinear Functional Analysis and Applications II. Springer, New York (1990) CrossRefzbMATHGoogle Scholar
  34. 34.
    Zeng, B., Liu, Z., Migorski, S.: On convergence of solutions to variational–hemivariational inequalities. Z. Angew. Math. Phys. (2018). http://doi.org/10.1007/000033-018-0980-3

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et PhysiqueUniversity of Perpignan Via DomitiaPerpignanFrance

Personalised recommendations