Journal of Elasticity

, Volume 134, Issue 1, pp 119–126 | Cite as

The Number of Independent Invariants for \(n\) Symmetric Second Order Tensors

  • M. H. B. M. ShariffEmail author
Classroom Note


We prove that the number of independent invariants for a set of \(n\) symmetric tensors is at most \(6n-3\).


Independent invariants Symmetric tensors 

Mathematics Subject Classification

74E10 74A99 



To the late Tony Spencer, an inspirational and kind teacher.


  1. 1.
    Ahamed, T., Dorfmann, L., Ogden, R.W.: Modelling of residually stressed materials with application to AAA. J. Mech. Behav. Biomed. Mater. 61, 221–234 (2016) CrossRefGoogle Scholar
  2. 2.
    Aguiar, A.R., Lopes da Rocha, G.: On the number of invariants in the strain energy density of an anisotropic nonlinear elastic material with two material symmetry directions. J. Elast. 131(1), 125–132 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aguiar, A.R., Lopes da Rocha, G.: Erratum: On the number of invariants in the strain energy density of an anisotropic nonlinear elastic material with two material symmetry directions. J. Elast. 131(1), 133–136 (2018) CrossRefzbMATHGoogle Scholar
  4. 4.
    Holzapfel, G.A., Ogden, R.W.: Constitutive modeling of passive myocardium: a structurally based framework of material characterization. Philos. Trans. R. Soc. A 367, 3445–3475 (2009) ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Holzapfel, G.A., Ogden, R.W.: On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math. Mech. Solids 14, 474–489 (2009) CrossRefzbMATHGoogle Scholar
  6. 6.
    Humphrey, J.D., Strumpf, R.K., Yin, F.C.P.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112, 333–339 (1990) CrossRefGoogle Scholar
  7. 7.
    Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers, 3rd edn. Springer, Berlin (2013) CrossRefzbMATHGoogle Scholar
  8. 8.
    Miller, G.H.: Minimal rotationally invariant bases for hyperlesticity. SIAM J. Appl. Math. 64(6), 2050–2075 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rivlin, R.S., Smith, G.F.: Orthogonal integrity basis for N symmetric matrices. In: Abir, D. (ed.) Contributions to Mechanics, pp. 121–141. Pergamon Press, New York (1969) CrossRefGoogle Scholar
  10. 10.
    Rubin, M.B.: Seven invariants are needed to characterize general orthotropic elastic materials: a comment on [Shariff, J. Elast. 110, 237–241 (2013)]. J. Elast. 123, 253–254 (2016) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Shariff, M.H.B.M.: Nonlinear transversely isotropic elastic solids: an alternative representation. Q. J. Mech. Appl. Math. 61, 129–149 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shariff, M.H.B.M.: Nonlinear orthotropic elasticity: only six invariants are independent. J. Elast. 110, 237–241 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shariff, M.H.B.M., Bustamante, R.: On the independence of strain invariants of two preferred direction nonlinear elasticity. Int. J. Eng. Sci. 97, 18–25 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shariff, M.H.B.M.: The number of independent invariants of an \(n\)-preferred direction anisotropic solid. Math. Mech. Solids 22(10), 1989–1996 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shariff, M.H.B.M., Bustamante, R., Merodio, J.: On the spectral analysis of residual stress in finite elasticity. IMA J. Appl. Math. 82(3), 656–680 (2017) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239–253. Academic Press, New York (1971) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mathematics, College of Arts and ScienceKhalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations