Journal of Elasticity

, Volume 135, Issue 1–2, pp 351–373 | Cite as

Explicit Relaxation of a Two-Well Hadamard Energy

  • Yury GrabovskyEmail author
  • Lev Truskinovsky


We compute an explicit quasiconvex envelope for a subclass of double-well Hadamard energies which model materials undergoing isotropic-to-isotropic elastic phase transitions. The construction becomes possible because of stability of the entire jump set, representing points that can coexist at phase boundaries. To prove stability we apply a recently developed technique for establishing polyconvexity of points on the jump set.


Quasiconvexity Polyconvexity Rank-one convexity Nonlinear elasticity Hadamard material Jump set Elastic stability Binodal 

Mathematics Subject Classification

74A50 74G65 49K40 49S05 



This work was started during the stay of YG at ESPCI, Paris supported by Chair Joliot. The work of both authors was supported by the National Science Foundation under Grant No. DMS-1714287. LT was supported additionally by the French Government under the Grant No. ANR-10-IDEX-0001-02 PSL.


  1. 1.
    Allaire, G., Kohn, R.V.: Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions. Q. Appl. Math. LI(4), 675–699 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allaire, G., Kohn, R.V.: Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Q. Appl. Math. LI(4), 643–674 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Antimonov, M.A., Cherkaev, A., Freidin, A.B.: Phase transformations surfaces and exact energy lower bounds. Int. J. Eng. Sci. 90, 153–182 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ball, J.M., James, R.: Proposed experimental tests of a theory of fine microstructure and two-well problem. Philos. Trans. R. Soc. Lond. 338A, 389–450 (1992) ADSzbMATHGoogle Scholar
  5. 5.
    Ball, J.M., James, R.D.: Incompatible sets of gradients and metastability. Arch. Ration. Mech. Anal. 218(3), 1363–1416 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ball, J.M., Murat, F.: \(W^{1,p}\)-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58(3), 225–253 (1984) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59(4), 703–766 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cherepanov, G.P.: Inverse problems of the plane theory of elasticity. J. Appl. Math. Mech. 38(6), 963–979 (1974) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cherkaev, A., Kucuk, I.: Detecting stress fields in an optimal structure. I. Two-dimensional case and analyzer. Struct. Multidiscip. Optim. 26(1–2), 1–15 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cherkaev, A., Kucuk, I.: Detecting stress fields in an optimal structure. II. Three-dimensional case. Struct. Multidiscip. Optim. 26(1–2), 16–27 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dacorogna, B.: A relaxation theorem and its application to the equilibrium of gases. Arch. Ration. Mech. Anal. 77(4), 359–386 (1981) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, New York (2008) zbMATHGoogle Scholar
  14. 14.
    Golubović, L., Lubensky, T.C.: Nonlinear elasticity of amorphous solids. Phys. Rev. Lett. 63(10), 1082 (1989) ADSCrossRefGoogle Scholar
  15. 15.
    Grabovsky, Y., Kohn, R.V.: Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: the Vigdergauz microstructure. J. Mech. Phys. Solids 43(6), 949–972 (1995) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grabovsky, Y., Truskinovsky, L.: Roughening instability of broken extremals. Arch. Ration. Mech. Anal. 200(1), 183–202 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grabovsky, Y., Truskinovsky, L.: Marginal material stability. J. Nonlinear Sci. 23(5), 891–969 (2013) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grabovsky, Y., Truskinovsky, L.: Normality condition in elasticity. J. Nonlinear Sci. 24(6), 1125–1146 (2014) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Grabovsky, Y., Truskinovsky, L.: Legendre-Hadamard conditions for two-phase configurations. J. Elast. 123(2), 225–243 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Grabovsky, Y., Truskinovsky, L.: When rank-one convexity meets polyconvexity: an algebraic approach to elastic binodal. J. Nonlinear Sci. (2018, in press). Google Scholar
  21. 21.
    Hadamard, J.: Leçons sur la propagation des ondes et les équations de l’hydrodynamique. Hermann, Paris (1903) zbMATHGoogle Scholar
  22. 22.
    John, F.: Plane elastic waves of finite amplitude. Hadamard materials and harmonic materials. Commun. Pure Appl. Math. 19(3), 309–341 (1966) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Morrey, C.B. Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Raoult, A.: Quasiconvex envelopes in nonlinear elasticity. In: Poly-, Quasi-and Rank-One Convexity in Applied Mechanics, pp. 17–51. Springer, Berlin (2010) CrossRefGoogle Scholar
  25. 25.
    Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb., Sect. A, Math. 120(1–2), 185–189 (1992) MathSciNetzbMATHGoogle Scholar
  26. 26.
    Tanaka, T.: Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40(12), 820 (1978) ADSCrossRefGoogle Scholar
  27. 27.
    Vigdergauz, S.B.: Two-dimensional grained composites of extreme rigidity. ASME J. Appl. Mech. 61(2), 390–394 (1994) ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Temple UniversityPhiladelphiaUSA
  2. 2.ESPCIParisFrance

Personalised recommendations