Advertisement

Experimental Study of Elastic Constants of a Dense Foam with Weak Cosserat Coupling

  • Z. Rueger
  • R. S. LakesEmail author
Article
  • 27 Downloads

Abstract

A dense closed cell foam is studied to determine which continuum theory of elasticity is applicable. Size effects inconsistent with classical elasticity are observed. The material exhibits a characteristic length scale considerably larger, by more than a factor 6, than the largest observable structure size. The Cosserat coupling number \(N\) is shown to be small, via measurements of size effects in square section bars, comparison with size effects in round section bars, and determination of warp of a square section bar in torsion. For this material, the couple stress theory is excluded and the modified couple stress theory is excluded. Theories that force constants to their thermodynamic limits do not apply to this foam. The role of other generalized continuum theories is considered.

Keywords

Elasticity Cosserat Micropolar Generalized continuum 

Mathematics Subject Classification

70-05 74A35 

Notes

Acknowledgements

Partial support of the National Science Foundation under Grant CMMI-1361832 is gratefully acknowledged. We thank W.J. Drugan for application of the full analysis of [7] to interpret square section results.

References

  1. 1.
    Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909) zbMATHGoogle Scholar
  2. 2.
    Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965) CrossRefGoogle Scholar
  3. 3.
    Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, vol. 1, pp. 621–729. Academic Press, New York (1968) Google Scholar
  4. 4.
    Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975) ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Krishna Reddy, G.V., Venkatasubramanian, N.K.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45, 429–431 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section—theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) (8 pages) ADSCrossRefGoogle Scholar
  7. 7.
    Drugan, W.J., Lakes, R.S.: Torsion of a Cosserat elastic bar with square cross section: theory and experiment. Z. Angew. Math. Phys. 69(2), 24 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mindlin, R.D.: Effect of couple stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963) CrossRefGoogle Scholar
  9. 9.
    Koiter, W.T.: Couple-Stresses in the theory of elasticity, Parts I and II. Proc. K. Ned. Akad. Wet. 67, 17–44 (1964) zbMATHGoogle Scholar
  10. 10.
    Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011) CrossRefGoogle Scholar
  11. 11.
    Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002) CrossRefzbMATHGoogle Scholar
  12. 12.
    Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010) CrossRefzbMATHGoogle Scholar
  13. 13.
    Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986) CrossRefGoogle Scholar
  14. 14.
    Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open cell polymer foam. Philos. Mag. 96, 93–111 (2016) ADSCrossRefGoogle Scholar
  15. 15.
    Rueger, Z., Lakes, R.S.: Cosserat elasticity of negative Poisson’s ratio foam: experiment. Smart Mater. Struct. 25, 054004 (2016), 8 pp. ADSCrossRefGoogle Scholar
  16. 16.
    Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018) ADSCrossRefGoogle Scholar
  17. 17.
    Merkel, A., Tournat, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    Spadoni, A., Ruzzene, M.: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    Beveridge, A.J., Wheel, M.A., Nash, D.H.: The micropolar elastic behaviour of model macroscopically heterogeneous materials. Int. J. Solids Struct. 50, 246–255 (2013) CrossRefGoogle Scholar
  20. 20.
    General Plastics Company, 4910 Burlington Way, Tacoma, WA 98409, https://www.generalplastics.com/
  21. 21.
    Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Pergamon, Oxford, Cambridge (1997) CrossRefzbMATHGoogle Scholar
  23. 23.
    Sokolnikoff, I.S.: Theory of Elasticity. Krieger, Malabar (1983) zbMATHGoogle Scholar
  24. 24.
    Weiner, J.H.: Statistical Mechanics of Elasticity. Wiley, New York (1983) zbMATHGoogle Scholar
  25. 25.
    Timoshenko, S.P.: History of Strength of Materials. Dover, New York (1983) Google Scholar
  26. 26.
    Drumheller, D.S., Sutherland, H.J.: A lattice model for stress wave propagation in composite materials. J. Appl. Mech. 40(1), 149–154 (1973) ADSCrossRefGoogle Scholar
  27. 27.
    Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983) CrossRefzbMATHGoogle Scholar
  28. 28.
    Hütter, G., Mülich, U., Kuna, M.: Micromorphic homogenizationn of a porous medium: elastic behavior and quasi-brittle damage. Contin. Mech. Thermodyn. 27, 1059–1072 (2015) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016) CrossRefzbMATHGoogle Scholar
  30. 30.
    Anderson, W.B., Lakes, R.S.: Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29, 6413–6419 (1994) ADSCrossRefGoogle Scholar
  31. 31.
    Lakes, R.S., Gorman, D., Bonfield, W.: Holographic screening method for microelastic solids. J. Mater. Sci. 20, 2882–2888 (1985) ADSCrossRefGoogle Scholar
  32. 32.
    Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990) CrossRefzbMATHGoogle Scholar
  33. 33.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964) MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964) MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kinra, V.K., Anand, A.: Wave propagation in a random particulate composite at long and short wavelengths. Int. J. Solids Struct. 18(5), 367–380 (1982) CrossRefGoogle Scholar
  36. 36.
    Kinra, V.K., Ker, E.: An experimental investigation of pass bands and stop bands in two periodic particulate composites. Int. J. Solids Struct. 19(5), 393–410 (1983) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Engineering PhysicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations