Advertisement

Macroscopic and Microscopic Behavior of Narrow Elastic Ribbons

  • Roberto ParoniEmail author
  • Giuseppe Tomassetti
Article
  • 69 Downloads

Abstract

A one-dimensional model for a narrow ribbon is derived from the plate theory of Kirchhoff by means of a power expansion in the width variable. The energy found coincides with the corrected Sadowsky’s energy. Furthermore, we derive the Euler-Lagrange equations and use them to study an equilibrium configuration of a twisted ribbon. Within this example we also describe how to construct the fine scale oscillations that develop in the deformed configuration.

Keywords

Ribbons Elasticity Relaxed energy 

Mathematics Subject Classification

74K10 74K20 74B20 49S05 

Notes

Acknowledgements

R. Paroni acknowledges support from the Università di Pisa through the project PRA_2018_61 “Modellazione multi-scala in ingegneria strutturale”.

References

  1. 1.
    Agostiniani, V., DeSimone, A., Koumatos, K.: Shape programming for narrow ribbons of nematic elastomers. J. Elast. 127, 1–24 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agostiniani, V., DeSimone, A.: Dimension reduction via \(\varGamma \)-convergence for soft active materials. Meccanica 52, 3457–3470 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Applied Mathematical Sciences, vol. 107. Springer, New York (2005) zbMATHGoogle Scholar
  4. 4.
    Audoly, B., Seffen, K.A.: Buckling of naturally curved elastic strips: the ribbon model makes a difference. J. Elast. 119, 293–320 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Y.C., Fosdick, R., Fried, E.: Representation for a smooth isometric mapping from a connected planar domain to a surface. J. Elast. 119, 335–350 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Y.C., Fosdick, R., Fried, E.: Representation of a smooth isometric deformation of a planar material region into a curved surface. J. Elast. 130, 145–195 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Y.C., Fosdick, R., Fried, E.: Issues concerning isometric deformations of planar regions to curved surfaces. J. Elast. 132, 1–42 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, Y.C., Fried, E.: Möbius bands, unstretchable material sheets, and developable surfaces. Proc. R. Soc., Math. Phys. Eng. Sci. 472, 20150760 (2016) ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Chopin, J., Kudrolli, A.: Helicoids, wrinkles, and loops in twisted ribbons. Phys. Rev. Lett. 111, 174302 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    Chopin, J., Démery, V., Davidovitch, B.: Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119, 137–189 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Math. Sciences, vol. 78. Springer, Berlin (1989) zbMATHGoogle Scholar
  12. 12.
    Dias, M.A., Audoly, B.: “Wunderlich, Meet Kirchhoff”: a general and unified description of elastic ribbons and thin rods. J. Elast. 119, 49–66 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Efrati, E.: Non-Euclidean ribbons. J. Elast. 119, 251–261 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^{p}\) Spaces. Springer Monographs in Mathematics. Springer, New York (2007) zbMATHGoogle Scholar
  15. 15.
    Fosdick, R., Fried, E.: The Mechanics of Ribbons and Möbius Bands. Springer, Dordrecht (2016) CrossRefzbMATHGoogle Scholar
  16. 16.
    Freddi, L., Hornung, P., Mora, M.G., Paroni, R.: A corrected Sadowsky functional for inextensible elastic ribbons. J. Elast. 123, 125–136 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Freddi, L., Hornung, P., Mora, M.G., Paroni, R.: A variational model for anisotropic and naturally twisted ribbons. SIAM J. Math. Anal. 48, 3883–3906 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Freddi, L., Hornung, P., Mora, M.G., Paroni, R.: One-dimensional von Kármán models for elastic ribbons. Meccanica 53, 659–670 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Freddi, L., Hornung, P., Mora, M.G., Paroni, R.: Generalised Sadowsky theories for ribbons from three-dimensional nonlinear elasticity. Submitted Google Scholar
  20. 20.
    Freddi, L., Mora, M.G., Paroni, R.: Nonlinear thin-walled beams with a rectangular cross-section—Part I. Math. Models Methods Appl. Sci. 22, 1150016 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Freddi, L., Mora, M.G., Paroni, R.: Nonlinear thin-walled beams with a rectangular cross-section—Part II. Math. Models Methods Appl. Sci. 23, 743–775 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hinz, D.F., Fried, E.: Translation of Michael Sadowsky’s paper “An elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem”. J. Elast. 119, 3–6 (2015) CrossRefzbMATHGoogle Scholar
  23. 23.
    Kirby, N.O., Fried, E.: Gamma-limit of a model for the elastic energy of an inextensible ribbon. J. Elast. 119, 35–47 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–88 (1850) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kohn, R.V., O’Brien, E.: The wrinkling of a twisted ribbon. J. Nonlinear Sci. 28, 1221–1249 (2018) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Moore, A., Healey, T.: Computation of elastic equilibria of complete Möbius bands and their stability. Math. Mech. Solids (2018).  https://doi.org/10.1177/1081286518761789 Google Scholar
  27. 27.
    Nardinocchi, P., Pezzulla, M., Teresi, L.: Anisotropic swelling of thin gel sheets. Soft Matter 11, 1492–1499 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    Paroni, R.: An existence theorem for inextensible nets with slack. Math. Mech. Solids 17, 460–472 (2012) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pipkin, A.C.: Inextensible networks with slack. Q. Appl. Math. 40, 63–71 (1982/1983) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rivlin, R.S.: Plane strain of a net formed by inextensible cords. J. Ration. Mech. Anal. 4, 951–974 (1955) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Rivlin, R.S.: The deformation of a membrane formed by inextensible cords. Arch. Ration. Mech. Anal. 2, 447–476 (1958/1959) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiuschen Bandes und die Zurückführung des geometrischen Problems auf ein Variationsproblem. Sitz.ber. Preuss. Akad. Wiss. 412–415 (1930) Google Scholar
  33. 33.
    Starostin, E.L., van der Heijden, G.H.M.: The equilibrium shape of an elastic developable Möbius strip. Proc. Appl. Math. Mech. 7, 2020115–2020116 (2007) CrossRefGoogle Scholar
  34. 34.
    Starostin, E.L., van der Heijden, G.H.M.: Equilibrium shapes with stress localisation for inextensible elastic Möbius and other strips. J. Elast. 119, 67–112 (2015) CrossRefzbMATHGoogle Scholar
  35. 35.
    Tomassetti, G., Varano, V.: Capturing the helical to spiral transitions in thin ribbons of nematic elastomers. Meccanica 52, 3431–3441 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Todres, R.E.: Translation of W. Wunderlich’s “On a developable Möbius band”. J. Elast. 119, 23–34 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Teresi, L., Varano, V.: Modeling helicoid to spiral-ribbon transitions of twist-nematic elastomers. Soft Matter 9, 3081–3088 (2013) ADSCrossRefGoogle Scholar
  38. 38.
    Sawa, Y., Urayama, K., Takigawa, T., Gimenez-Pinto, V., Mbanga, B.L., Ye, F., Selinger, J.V., Selinger, R.L.: Shape and chirality transitions in off-axis twist nematic elastomer ribbons. Phys. Rev. E 88, 022502 (2013) ADSCrossRefGoogle Scholar
  39. 39.
    Wan, G., Jin, C., Trase, I., Zhao, S., Chen, Z.: Helical structures mimicking chiral seedpod opening and tendril coiling. Sensors 18, 2973 (2018) CrossRefGoogle Scholar
  40. 40.
    Wunderlich, W.: Über ein abwickelbares Möbiusband. Monatshefte Math. 66, 276–289 (1962) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.DICIUniversità di PisaPisaItaly
  2. 2.Dipartimento di IngegneriaUniversità Roma TreRomaItaly

Personalised recommendations