Advertisement

Neocosmospora keratoplastica, a relevant human fusarial pathogen is found to be associated with wilt and root rot of Muskmelon and Watermelon crops in Spain: epidemiological and molecular evidences

  • V. GonzálezEmail author
  • S. García-Martínez
  • A. Flores-León
  • J. J. Ruiz
  • B. Picó
  • A. Garcés-Claver
Article
  • 14 Downloads

Abstract

Some taxa of the Fusarium solani species complex (FSSC) have been associated with clinical infections in humans and plant diseases. Among the several fusaria that cause relevant mycoses in cucurbits in Spain, Neocosmospora keratoplastica is described for the first time as responsible for wilt and root rot in both watermelon and melon crops in producing areas of Valencia and Alicante provinces. Due to the ecological and systematic complexity of the group, with described clinical forms and plant pathogens practically indistinguishable from each other, both pathological evidences (including artificial inoculation bioassays) and molecular methods (multilocus phylogeny based on ITS, TEF-1α, and RPB2 regions) are provided to confirm this finding, since the presence of this soil-borne pathogen could have been probably underestimated in cucurbits-producing areas of Spain.

Keywords

Cucurbits Epidemiology Fusarium solani species complex Pathogenicity Molecular phylogeny ITS TEF-1α RPB2 

Notes

Acknowledgements

This work was supported by the by the Spanish Ministerio de Ciencia, Innovación y Universidades grants AGL2017-85563-C2 (1-R and 2-R) (cofunded with FEDER funds) and by the PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d’Educació, Investigació, Cultura i Esports (Generalitat Valenciana).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10658_2020_1931_MOESM1_ESM.doc (12 kb)
ESM 1 (DOC 12.5 kb)
10658_2020_1931_MOESM2_ESM.fas (114 kb)
ESM 2 (FAS 114 kb)
10658_2020_1931_MOESM3_ESM.pdf (55 kb)
ESM 3 (PDF 55.1 kb)

References

  1. Cabral, C. S., Melo, M. P., Fonseca, M. E. N., Boiteux, L. S., & Reis, A. (2016). A root rot of chickpea caused by isolates of the Fusarium solani species complex in Brazil. Plant Disease, 100, 2171.  https://doi.org/10.1094/PDIS-05-15-0571-PDN.CrossRefGoogle Scholar
  2. Chehri, K., Salleh, B., & Zakaria, L. (2015). Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microbial Ecology, 69, 457–471.CrossRefGoogle Scholar
  3. Chitrampalan, P., & Nelson Jr., B. (2015). Multilocus phylogeny reveals an association of agriculturally important Fusarium solani species complex (FSSC) 11, and clinically important FSSC 5 and FSSC 3 + 4 with soybean roots in the north central United States. Antonie Van Leeuwenhoek, 109, 335–347.  https://doi.org/10.1007/s10482-015-0636-7.CrossRefGoogle Scholar
  4. Coleman, J. J. (2016). The Fusarium solani species complex: ubiquitous pathogens of agricultural inportance. Molecular Plant Pathology, 17, 146–158.CrossRefGoogle Scholar
  5. Crespo, M., Lawrence, D. P., Nouri, M. T., Doll, D. A., & Trouillas, F. P. (2019). Characterization of Fusarium and Neocosmospora species associated with crown rot and stem canker of pistachio rootstocks in California. Plant Disease, 103, 1931–1939.CrossRefGoogle Scholar
  6. González, V., Armengol, J., & Garcés-Claver, A. (2018). First report of Fusarium petroliphilum causing fruit root of Butternut Squash in Spain. Plant Disease, 102, 1662.CrossRefGoogle Scholar
  7. Martyn, R. D. (1996). Fusarium wilts. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of cucurbit diseases (pp. 11–16). St. Paul: APS Press.Google Scholar
  8. Martyn, R. D. (2014). Fusarium wilt of watermelon: 120 years of research. Horticultural Reviews, 42, 349–442.Google Scholar
  9. Mehl, H. L., & Epstein, L. (2007). Fusarium solani species complex isolates conspecific with Fusarium solani f. sp. cucurbitae race 2 from naturally infected human and plant tissue and environmental sources are equally virulent on plants, grow at 37° C and are interfertile. Environmental Microbiology, 9, 2189–2199.CrossRefGoogle Scholar
  10. O’Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca–Fusarium solani species complex. Mycologia, 92, 919–938.CrossRefGoogle Scholar
  11. O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95, 2044–2049.CrossRefGoogle Scholar
  12. O’Donnell, K., Sutton, D. A., Fothergill, A., McCarthy, D., Rinaldi, M. G., Brandt, M. E., et al. (2008). Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. Journal of Clinical Microbiology, 46, 2477–2490.CrossRefGoogle Scholar
  13. O’Donnell, K., Sutton, D. A., Wiederholt, N., Robert, V. A. R. G., Crous, P. W., & Geiser, D. M. (2016). Veterinary Fusarioses within the United States. Journal of Clinical Microbiology, 54, 2813–2819.CrossRefGoogle Scholar
  14. Reeb, V., Lutztoni, F., & Roux, C. (2004). Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution, 32, 1036–1060.CrossRefGoogle Scholar
  15. Rentería-Martínez, M. E., Guerra-Camacho, M. A., Ochoa-Meza, A., Moreno-Salazar, S. F., Varela-Romero, A., Gutiérrez-Millán, L. E., & Meza-Moller, A. C. (2018). Multilocus phylogenetic analysis of fungal complex associated with root rot watermelon in Sonora, Mexico. Mexican Journal of Phytopathology, 36, 1–23.  https://doi.org/10.18781/R.MEX.FIT.1710-1.CrossRefGoogle Scholar
  16. Sandoval-Denis, M., & Crous, P. W. (2018). Removing chaos from confusion: assigning names to common human and animal pathogens in Neocosmospora. Persoonia, 41, 109–129.CrossRefGoogle Scholar
  17. Sandoval-Denis, M., Lombard, L., & Crous, P. W. (2019). Back to the roots: a reappraisal of Neocosmospora. Persoonia, 43, 90–185.Google Scholar
  18. Sarmiento-Ramírez, J. M., Abella-Pérez, E., Phillott, A. D., Sim, J., van West, P., Martín, M. P., Marco, A., & Diéguez-Uribeondo, J. (2014). Global distribution of two fungal pathogens threatening endangered sea turtles. PLoS ONE, 9, e85853.  https://doi.org/10.1371/journal.pone.0085853.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Shaffer, J. P., U’Ren, J. M., Gallery, R. E., Baltrus, D. A., & Arnold, A. E. (2017). An endohyphal bacterium (Chitinophaga, bacteroidetes) alters carbon source use by Fusarium keratoplasticum (F. solani species complex, Nectriaceae). Frontiers in Microbiology, 8, 350.CrossRefGoogle Scholar
  20. Short, D. P. G., O'Donnell, K., Thrane, U., Nielsen, K. F., Zhang, N., Juba, J. H., & Geiser, D. M. (2013). Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genetics and Biology, 53, 59–70.CrossRefGoogle Scholar
  21. Sousa, E. S., Melo, M. P., Mota, J. M., Sousa, E. M. J., Beserra, J. E. A., & Matos, K. S. (2017). First report of Fusarium falciforme (FSSC 3 + 4) causing root rot in lima bean (Phaseolus lunatus L.) in Brazil. Plant Disease, 101, 1954.  https://doi.org/10.1094/PDIS-05-17-0657-PDN. CrossRefGoogle Scholar
  22. Sutton, D. A., & Brandt, M. B. (2011). Fusarium and other opportunistic hyaline fungi. In J. Versalovic, K. Carroll, G. Funke, et al. (Eds.), Manual of clinical microbiology (10th ed., pp. 1853–1879). Washington, USA: ASM Press.Google Scholar
  23. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.  https://doi.org/10.1093/molbev/mst197.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Tirado-Ramirez, M. A., Lopez-Orona, C. A., de Velazquez-Alcaraz, T. J., Diaz-Valdes, T., Velarde-Felix, S., Martinez-Campos, A. R., & Retes-Manjarrez, J. E. (2018). First report of onion basal rot caused by Fusarium falciforme in Mexico. Plant Disease, 102, 2646–2647.CrossRefGoogle Scholar
  25. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (345p). San Diego: Academic Press.Google Scholar
  26. Zhang, N., O’Donnell, K., Sutton, D. A., et al. (2006). Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. Journal of Clinical Microbiology, 44, 2186–2190.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2020

Authors and Affiliations

  1. 1.Centro de Investigación y Tecnología Agroalimentaria de AragónUnidad de Sanidad Vegetal / Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza)ZaragozaSpain
  2. 2.Departamento de Biología AplicadaUniversidad Miguel Hernández de Elche. Carretera de Beniel km 3,2OrihuelaSpain
  3. 3.Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV)Universitat Politècnica de ValènciaValenciaSpain
  4. 4.Centro de Investigación y Tecnología Agroalimentaria de AragónUnidad de Hortofruticultura / Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza)ZaragozaSpain

Personalised recommendations