Advertisement

European Journal of Plant Pathology

, Volume 156, Issue 2, pp 603–613 | Cite as

Molecular characterization of Alfalfa mosaic virus (AMV) isolates in alfalfa and other plant species in different regions in Saudi Arabia

  • O. A. AbdallaEmail author
  • I. M. AL-Shahwan
  • M. A. AL-Saleh
  • M. A. Amer
Article
  • 47 Downloads

Abstract

In a survey conducted in 2012 and 2013, 1166 samples from alfalfa plants and 202 samples from symptomatic weeds and cultivated plants growing adjacent to alfalfa fields were collected. Using DAS-ELISA, Alfalfa mosaic virus (AMV) was detected in 58.4% of the alfalfa samples and in 63.9% of the weeds and cultivated plants samples. ELISA detection of AMV was confirmed by testing representative samples from all regions by RT-PCR using a pair of primers (AMV/F and AMV/R) specific to the AMV coat protein (CP) gene. The size of the major product obtained from AMV-infected plants was identical to the 700 bp size expected from the CP gene of AMV. The amino acids and the nucleotide sequences of 17 Saudi AMV isolates from alfalfa, and 16 from other cultivated plants and weeds detected in different regions in Saudi Arabia showed a percentage of similarity that ranged between 87.9%–100% among them and 86.2% - 100% when compared with sequences of 15 different AMV isolates reported in the GenBank. This is the first time AMV was detected in Vigna unguiculata and in the following weed plant species: Chenopodium quinoa, Convolvulus arvensis, Malva parviflora, Hibiscus spp., Hippuris vulgaris, Cichorium intybus, and Flaveria trinervia in Saudi Arabia.

Keywords

Alfalfa AMV ELISA RT-PCR Saudi Arabia 

Notes

Acknowledgements

This Project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (10-BIO 979-02).

Compliance with ethical standards

This research is part of a project funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Grant Number (10-BIO 979-02). This manuscript complies with the Ethical Rules applicable for this journal. The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study. It also complies with all details of the relevant ethical rules that came under the following headings:

- Ethical responsibilities of authors.

- Compliance with ethical standards.

- Disclosure of potential conflicts of interest.

- Research involving human participants or and/or animals.

- Informed consent.

- Springer’s guide on publishing ethics.

- Fighting plagiarism, piracy and fraud.

It also complies with any other ethical rules required by the journal that may have not been included in this statement.

References

  1. Al-Abrahim, J. S. (2014). Molecular identification of Alfalfa mosaic virus isolated from naturally infected alfalfa (Medicago sativa) crop in Saudi Arabia. International Journal of Plant, Animal and Environmental Sciences, 4(1), 348–352.Google Scholar
  2. AL-Saleh, M. A., & Amer, M. A. (2013). Biological and molecular variability of Alfalfa mosaic virus affecting alfalfa crop in Riyadh region. Plant Pathology Journal, 29(14), 410–417.PubMedCrossRefPubMedCentralGoogle Scholar
  3. AL-Shahwan, I. M. (2002). Alfalfa mosaic virus (AMV) on alfalfa (Medicago sativa L.) in Saudi Arabia. Assiut Journal of Agricultural Sciences, 33, 21–30.Google Scholar
  4. AL-Shahwan, I. M. (2003). Host index and status of plant viruses and virus-like disease agents in Saudi Arabia. Res. Bult., No.121: Agric. Res. Center, King Saud Univ., pp: 5–27.Google Scholar
  5. AL-Shahwan, I. M., & Abdalla, O. A. (1998). Identification of Alfalfa mosaic virus (AMV) and other viruses from wild and cultivated plant species and reaction of the available potato cultivars to AMV in Saudi Arabia. Saudi J. Biol. Sci., 5, 39–44.Google Scholar
  6. AL-Shahwan, I. M., Abdalla, O. A., & Al-Saleh, M. A. (1997). Viruses in the northern potato producing regions of Saudi Arabia. Plant Pathology, 46, 91–94.CrossRefGoogle Scholar
  7. Al-Shahwan, I. M., Anaam, A. M., Abdalla, O. A. (2007). Evaluation of greenhouse-grown pepper cultivars to infection with an isolate of Alfalfa mosaic virus (AMV) in Saudi Arabia. Research bulletin No. 151. Agric. Research Center, College of Food and Agricultural Sciences, King Saud University, Kingdom of Saudi Arabia, pp. 5-28.Google Scholar
  8. AL-Shahwan, I. M., Abdalla, O. A., & AL brahim, J. S. (2010). Effect of Alfalfa mosaic virus (AMV) on the yield of alfalfa (Medicago sativa L.) Cultivars grown in Saudi Arabia. Journal of Agriculture and Veterinary Sciences, Qassim University, 3, 23–36.Google Scholar
  9. AL-Shahwan, I. M., Al-Saleh, A. M., Abdalla, O. A., Amer, M. A. (2013). Preliminary data on viruses affecting alfalfa in Saudi Arabia. Presented at “International Conference of Plant Disease and Resistance mechanism” held in Vienna on 20–22 February, 2013.Google Scholar
  10. AL-Shahwan, I. M., Al-Saleh, A. M., Abdalla, O. A., Amer, M. A. (2014). Viruses associated with alfalfa and adjacent weeds and cultivated plants in the Kingdom of Saudi Arabia. Presented at "11thConference of the European Foundation for Plant Pathology" held in Krakow, Poland on 8-13 September, 2014.Google Scholar
  11. AL-Shahwan, I. M., Abdalla, O. A., Al-Saleh, A. M., & Amer, M. A. (2016a). Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia. Saudi Journal of Biological Sciences, 24, 1336–1343.PubMedPubMedCentralCrossRefGoogle Scholar
  12. AL-Shahwan, I. M., Farooq, T., Al-Saleh, M. A., Abdalla, O. A., & Amer, M. A. (2016b). First report of Red clover vein mosaic virus infecting alfalfa in Saudi Arabia. Plant Disease Note, 100(2), 539.CrossRefGoogle Scholar
  13. AL-Shahwan, I. M., Raza, A., Abdalla, O. A., Al-Saleh, M. A., & Amer, M. A. (2016c). First report of Lucerne transient streak virus (LTSV) on Alfalfa in Saudi Arabia. Plant Disease Note, 100(2), 540.CrossRefGoogle Scholar
  14. Bailiss, K. W., & Ollennu, L. A. A. (1986). Effect of Alfalfa mosaic virus isolates on forage yield of lucerne (Medicago sativa) in Britain. Plant Pathology, 35, 162–168.CrossRefGoogle Scholar
  15. Bancroft, J. B., Moorhead, E. L., Tuite, J., & Liu, H. P. (1960). The antigenic characteristics and the relationship among strains of Alfalfa mosaic virus. Phytopathology, 50, 34–39.Google Scholar
  16. Bergua, M., Luis-Arteaga, M., & Escriu, F. (2014). Genetic diversity, reassortment, and recombination in Alfalfa mosaic virus population in Spain. Phytopathology, 104, 1241–1250.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Clark, M. F., & Adams, A. N. (1977). Characterization of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. The Journal of General Virology, 34, 475–483.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Crill, P., Hagedorn, D. J., & Hanson, E. W. (1970). Incidence and effect of Alfalfa mosaic virus on alfalfa. Phytopathology, 60, 1432–1435.CrossRefGoogle Scholar
  19. Fitch, W. M. (1977). Problem of discovering most parsimonious tree. The American Naturalist, 111, 223–257.CrossRefGoogle Scholar
  20. Fletcher, J. D. (2001). New hosts of Alfalfa mosaic virus, Cucumber mosaic virus, Potato virus Y, Soybean dwarf virus, and Tomato spotted wilt virus in New Zealand. New Zealand Journal of Crop and Horticultural Science, 29, 213–217.CrossRefGoogle Scholar
  21. Forster, R. L. S., Morris-Krsinich, B. A. M., & Musgrave, D. R. (1985). Incidence of alfalfa mosaic virus, lucerne Australian latent virus, and lucerne transient streak virus in lucerne crops in the North Island of New Zealand. New Zealand Journal of Crop and Horticultural Science, 28, 279–282.Google Scholar
  22. Frosheiser, F. I. (1974). Alfalfa Mosaic Virus transmission to seed through alfalfa gametes and longevity in alfalfa seed. Phytopathology, 64, 102–105.CrossRefGoogle Scholar
  23. Garran, J., & Gibbs, A. J. (1982). Studies on alfalfa mosaic virus and alfalfa aphids. Australian Journal of Agricultural Research, 33, 657–664.CrossRefGoogle Scholar
  24. Guy, P. L. (2014). Viruses of New Zealand pasture grasses and legumes: A review. Crop & Pasture Science, 65, 841–853.CrossRefGoogle Scholar
  25. Guy, P. L., & Forster, R. L. S. (1996). Viruses of New Zealand pasture grasses and legumes.: Pasture and forage crop pathology., In S. Chakraborty, K. T. Leath, R. A. Skipp, G. A. Pederson, R. A. bray, G. C. M. Latch, and F. W. Nutter (ed.), pp. 289–302. American Society of Agronomy & the Crop Science Society of America: Madison WI, USA.Google Scholar
  26. Guy, P. L., Gerard, P. J., & Wilson, D. J. (2013). Incidence of viruses in white clover on the North Island of New Zealand. Australasian Plant Pathology, 42, 639–642.CrossRefGoogle Scholar
  27. Hajimorad, M. R., & Francki, R. I. B. (1988). Alfalfa mosaic virus isolates from lucerne in South Australia: Biological variability and antigenic similarity. The Annals of Applied Biology, 113, 45–54.CrossRefGoogle Scholar
  28. Hall, T. A. (1999). Bio edit: A user-friendly biological sequence alignment editor and analysis program from windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  29. Hiruki, C., Hampton, R. O. (1990). Alfalfa mosaic. In: Stuteville, D. L. and Erwin, D. C., 2nd Ed., APS press, St. Paul "Compendium of Alfalfa Diseases", pp. 54.Google Scholar
  30. Jaspars, E. M., & Bos, L. (1980). Alfalfa mosaic virus, No. 229 in: Descriptions of plant viruses. England: Commonwealth Mycology Institute Association. Applied Biology. Kew.Google Scholar
  31. Jones, R. A. C. (2012). Virus diseases of annual pasture legumes: Incidences, losses, epidemiology, and management. Crop and Pasture Science, 63(5), 399–418.CrossRefGoogle Scholar
  32. Kraal, B. (1975). Amino acid analysis of Alfalfa mosaic virus coat proteins: An aid for viral strain identification. Virology, 66, 336–340.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Latham, L. J., & Jones, R. A. C. (2001). Alfalfa mosaic and pea seed-borne mosaic viruses in cool season crop, annual pasture, and forage legumes: Susceptibility, sensitivity, and seed transmission. Australian Journal of Agricultural Research, 52, 771–790.CrossRefGoogle Scholar
  34. Massumi, H., Maddahian, M., Heydarnejad, J., Hosseini-Pour, A., & Farahmand, A. (2012). Incidence of viruses infecting alfalfa in the southeast and central regions of Iran. Journal of Agricultural Science Technology, 14, 1141–1148.Google Scholar
  35. McKirdy, S. J., & Jones, R. A. C. (1994). Infection of alternative hosts associated with annual medics (Medicago spp.) by Alfalfa mosaic virus and its persistence between growing seasons. Australian Journal of Agricultural Research, 45, 1413–1426.CrossRefGoogle Scholar
  36. Mih, A. M., & Hanson, J. (1998). Alfalfa mosaic virus: Occurrence and variation among isolates from forage legumes in Ethiopia. Tropical Grasslands, 32, 118–123.Google Scholar
  37. Milbrath, J. A., & McWhorter, F. P. (1953). The reaction of tomato varieties to various strains of Alfalfa mosaic virus. Phytopathology, 43, 479–479.Google Scholar
  38. Milbrath, J. A., & McWhorter, F. P. (1954). Response of cowpea varieties to strains of Alfalfa mosaic virus. Phytopathology, 44, 498–498.Google Scholar
  39. Ministry of Agriculture, (2014). Agricultural statistical year book. Volume 24, Saudi Arabia.Google Scholar
  40. Mughal, S. M., Zadjali, A. D., & Matrooshi, A. R. (2003). Occurrence, distribution and some properties of alfalfa mosaic alfamovirus in the Sultanate of Oman. Pakistan Journal of Agricultural Sciences, 40, 67–73.Google Scholar
  41. Ormeño, J., Sepúlveda, P., Rojas, R., & Araya, J. E. (2006). Datura genus weeds as an epidemiological factor of Alfalfa mosaic virus (AMV), Cucumber mosaic virus (CMV), and Potato virus Y (PVY) on Solanaceous crops. Agricultura Técnica (Chile), 66, 333–341.Google Scholar
  42. Parrella, G., Lanave, C., Marchoux, G., Sialer, M. M., Di Franco, A., & Gallitelli, D. (2000). Evidence for two distinct subgroups of Alfalfa mosaic virus (AMV) from France and Italy and their relationships with other AMV strains. Archives of Virology, 145, 2659–2667.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Parrella, G., Acanfora, N., Orílio, A., & Navas-Castillo, J. (2011). Complete nucleotide sequence of a Spanish isolate of alfalfa mosaic virus: Evidence for additional genetic variability. Archives of Virology, 156, 1049–1052.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Rahman, F., & Peaden, R. N. (1993). Incidence of viruses on alfalfa in Western North America. Plant Disease, 77, 160–162.CrossRefGoogle Scholar
  45. Raza, A., Al-Shahwan, I. M., Abdalla, O. A., Al-Saleh, M. A., & Amer, M. A. (2017). Lucerne transient streak virus; a recently detected virus infecting Alfafa (Medicago sativa) in Central Saudi Arabia. Plant Pathology Journal, 33(1), 43–52.PubMedCrossRefGoogle Scholar
  46. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedPubMedCentralGoogle Scholar
  47. Sambrook, J., & Russel, D. (2001). Molecular cloning: A laboratory manual. 3rd Ed. Volume 1. Cold Spring Harbor Laboratory Press, New York – USA.Google Scholar
  48. Shah, D. A., Dillard, H. R., Mazumdar-Leighton, S., Gonsalves, D., & Nault, B. A. (2006). Incidence, spatial patterns, and associations among viruses in snap bean and alfalfa in New York. Plant Disease, 90, 203–210.PubMedCrossRefGoogle Scholar
  49. Šutic, D. D., Ford, R. E., & Tošic, M. T. (1999). Handbook of plant virus diseases. Washington: CRC Press.Google Scholar
  50. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgens, D. G. (1997). The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Trucco, V., de Breuil, S., Bejerman, N., Lenardon, S., & Giolitti, F. (2013). Complete nucleotide sequence of alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina. Virus Genes, 48, 562–565.CrossRefGoogle Scholar
  52. Van Leur, J. A. G., & Kumari, S. G. (2011). A survey of lucerne in northern New South Wales for viruses of importance to the winter legume industry. Australasian Plant Pathology, 40, 180–186.CrossRefGoogle Scholar
  53. Xu, H., & Nie, J. (2006). Identification, characterization and molecular detection of alfalfa mosaic virus in potato. Phytopathology, 96, 1237–1242.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2020

Authors and Affiliations

  • O. A. Abdalla
    • 1
    Email author
  • I. M. AL-Shahwan
    • 1
  • M. A. AL-Saleh
    • 1
  • M. A. Amer
    • 1
  1. 1.Plant Protection Department, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations