Advertisement

Genotype-Ideotype distance index and multivariate analysis to select sources of anthracnose resistance in Capsicum spp.

  • Claudia Lougon Paiva de Almeida
  • Cíntia dos Santos Bento
  • Cláudia Pombo Sudré
  • Samy Pimenta
  • Leandro Simões Azeredo Gonçalves
  • Rosana RodriguesEmail author
Article
  • 24 Downloads

Abstract

The challenges of plant breeding for disease resistance include identifying genotypes that are resistant to more than one pathogen isolate and defining adequate methods for measuring resistance. We report the identification of Capsicum spp. genotypes resistant to anthracnose caused by two Colletotrichum scovillei isolates using the Genotype-Ideotype Distance Index (GIDI) and multivariate analysis. Forty-one genotypes of chili peppers from three Capsicum species considering unripe and ripe fruits were evaluated for resistance to anthracnose. For inoculation, 20 μL of a suspension containing 1 × 106 conidia/mL were applied in each fruit. Analyses were performed daily for eight days using a scale from 1 (resistant) to 9 (susceptible). Area under the disease progress curve (AUDPC), incubation period, and latent period were evaluated in unripe and ripe fruits, and analyzed using a non-parametric test with ANOVA-type statistic and correlated using the Spearman method. Genotypes were classified using the GIDI and Ward’s hierarchical clustering method. There was variability in germplasm resistance to anthracnose considering the resistance variables and the stage of fruit development. GIDI allowed identifying nine C. baccatum var. pendulum genotypes resistant to isolate 13, and eight C. baccatum var. pendulum plus one C. annuum genotypes resistant to isolate 8. GIDI and Ward’s clustering method identified the same genotypes resistant to isolate 8. Finding resistance in Capsicum genotypes representing different genic complexes means that breeders would be able to introgress resistant alleles from non-cultivated or semi-domesticated into cultivated plants. One genotype, UENF 1628 (C. baccatum var. pendulum), was resistant to two pathogen isolates representing a very interesting source of resistance to anthracnose caused by C. scovillei.

Keywords

Colletotrichum scovillei Breeding for disease resistance Chili pepper Stages of fruit development Resistant ideotype 

Notes

Acknowledgments

The authors thank the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Ali, A., Bordoh, P. K., Singh, A., Siddiqui, Y., Droby, S. (2016). Post-harvest development of anthracnose in pepper (Capsicum spp.): Etiology and management strategies. Crop Protection, 90(132-141).  https://doi.org/10.1016/j.cropro.2016.07.026.CrossRefGoogle Scholar
  2. Andrivon, D., Giorgetti, C., Baranger, A., Calonnec, A., Cartolaro, P., Faivre, R., Guyader, S., Lauri, P. E., Lescourret, F., Parisi, L., Ney, B., Tivoli, B., & Sache, I. (2012). Defining and designing plant architectural ideotype to control epidemics? European Journal of Plant Pathology, 135, 611–617.  https://doi.org/10.1007/s10658-012-0126-y.CrossRefGoogle Scholar
  3. Baba, V. Y., Constantino, L. V., Ivamoto, S. T., Moreira, A. F. P., Madeira, T. B., Nixdorf, S. L., Rodrigues, R., & Gonçalves, L. S. A. (2019). Capsicum-Colletotrichum interaction: Identification of resistance sources and quantification of secondary metabolites in unripe and ripe fruits in response to anthracnose infection. Scientia Horticulturae, 246(469–477).  https://doi.org/10.1016/j.scienta.2018.11.011.CrossRefGoogle Scholar
  4. Bento, C. S., de Souza, A. G., Sudré, C. P., Pimenta, S., & Rodrigues, R. (2017). Multiple genetic resistances in Capsicum spp. Genetics and Molecular Research: GMR, 16(3).  https://doi.org/10.4238/gmr16039789.
  5. Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2018). Retrieved November, 18, 2018, from http://www.agricultura.gov.br/vegetal/registrosautorizacoes/registro/registro-nacionalcultivares.
  6. Caires, N. P., Pinho, D. B., Souza, J. S. C., Silva, M. A., Lisboa, D. O., Pereira, O. L., & Furtado, G. Q. (2014). First report of anthracnose on pepper fruit caused by Colletotrichum scovillei in Brazil. Plant Disease, 98(10), 1437–1437.CrossRefGoogle Scholar
  7. Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. Hoboken: Wiley.Google Scholar
  8. Cruz, C. D. (2013). Genes: A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271–276.  https://doi.org/10.4025/actasciagron.v35i3.21251.CrossRefGoogle Scholar
  9. Delmas, C. E., Fabre, F., Jolivet, J., Mazet, I. D., Richart Cervera, S., Deliere, L., & Delmotte, F. (2016). Adaptation of a plant pathogen to partial host resistance: Selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications, 9(5), 709–725.  https://doi.org/10.1111/eva.12368.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Frézal, L., Desquilbet, L., Jacqua, G., & Neema, C. (2012). Quantification of the aggressiveness of a foliar pathogen, Colletotrichum gloeosporioides, responsible for water yam (Dioscorea alata) anthracnose. European Journal of Plant Pathology, 134(2), 267–279.  https://doi.org/10.1007/s10658-012-9986-4.CrossRefGoogle Scholar
  11. Gauffreteau, A. (2018). Using ideotypes to support selection and recommendation of varieties. OCL, 25(6), D602.  https://doi.org/10.1051/ocl/2018042.CrossRefGoogle Scholar
  12. Kanchana-udomkan, C., Taylor, P. W. J., & Mongkolporn, O. (2004). Development of a biossay to study anthracnose infection of Capsicum chinense Jacq. fruit caused by Colletotrichum capsici. Thai Journal of Agricultural Science, 37, 293–297.Google Scholar
  13. Khalimi, K., Darmadi, A. A. K., & Suprapta, D. N. (2019). First report on the prevalence of Colletotrichum scovillei associated with anthracnose on chili pepper in Bali, Indonesia. International Journal of Agriculture and Biology.  https://doi.org/10.17957/IJAB/15.1072.
  14. Kim, W. G., Cho, E. J., & Lee, E. J. (1986). Two strains of Colletotrichum gloeosporioides Penz. causing anthracnose of pepper fruits. Korean Journal of Plant Pathology, 2, 107–113.Google Scholar
  15. Kim, K. D., Oh, B. J., & Yang, J. (1999). Differential interactions of a Colletotrichum gloeosporioides isolated with green and red pepper fruits. Phytoparasitica, 27, 97–106.  https://doi.org/10.1007/BF03015074.CrossRefGoogle Scholar
  16. Kim, S. Y., Lee, H. H., Ko, M. K., Song, C. E., Bae, C., Lee, Y. H., & Oh, B.-J. (2001). Inhibition of fungal appressorium formation by pepper (Capsicum annuum) esterase. Molecular Plant-Microbe Interactions, 14(1), 80–85.  https://doi.org/10.1094/MPMI.2001.14.1.80.CrossRefPubMedGoogle Scholar
  17. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621.  https://doi.org/10.1080/01621459.1952.10483441.CrossRefGoogle Scholar
  18. Lahkar, J., Goswami, D., Deka, S., & Ahmed, G. (2018). Novel approaches for application of biosurfactant produced by Pseudomonas aeruginosa for biocontrol of Colletotrichum capsici responsible for anthracnose disease in chilli. European Journal of Plant Pathology, 150(1), 57–71.  https://doi.org/10.1007/s10658-017-1252-3.CrossRefGoogle Scholar
  19. Mahasuk, P., Khumpeng, N., Wasee, S., Taylor, P. W. J., & Mongkolporn, O. (2009a). Inheritance of resistance to anthracnose (Colletotrichum capsici) at seedling and fruiting stages in chili pepper (Capsicum spp.). Plant Breeding, 128, 701–706.  https://doi.org/10.1111/j.1439-0523.2008.01615.x.CrossRefGoogle Scholar
  20. Mahasuk, P., Taylor, P. W. J., & Mongkolporn, O. (2009b). Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum. Phytopathology, 99(9), 1100–1104.  https://doi.org/10.1094/PHYTO-99-9-1100.CrossRefPubMedGoogle Scholar
  21. Mahasuk, P., Chinthaisong, J., & Mongkolporn, O. (2013). Differential resistances to anthracnose in Capsicum baccatum as responding to two Colletotrichum pathotypes and inoculation methods. Breeding Science, 63, 333–338.  https://doi.org/10.1270/jsbbs.63.333.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mahasuk, P., Struss, D., & Mongkolporn, O. (2016). QTLs for resistance to anthracnose identified in two Capsicum sources. Molecular Breeding, 36(1), 10.  https://doi.org/10.1007/s11032-016-0435-5.CrossRefGoogle Scholar
  23. Marinho, C. D., Gravina, G. A., Sebastião, L. C. A., Almeida, N. A., Daher, R. F., Brasileiro, B. P., Paula, T. O. M., & Amaral Júnior, A. T. (2014). Indexes in the comparison of pre-commercial genotypes of common bean. Ciência Rural, 44(7), 1159–1165.  https://doi.org/10.1590/0103-8478cr20121155.CrossRefGoogle Scholar
  24. Mongkolporn, O., & Taylor, P. W. J. (2018). Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant Pathology, 67, 1255–1126.  https://doi.org/10.1111/ppa.12850.CrossRefGoogle Scholar
  25. Mongkolporn, O., Montri, P., Supakaew, T., Paul, W., & Taylor, J. (2010). Differential actions on mature green and ripe chili fruit infected by three Colletotrichum spp. Plant Disease, 94, 306–310.  https://doi.org/10.1094/PDIS-94-3-0306.CrossRefPubMedGoogle Scholar
  26. Montri, P., Taylor, P. W. J., & Mongkolporn, O. (2009). Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Disease, 93, 17–20.  https://doi.org/10.1094/PDIS-93-1-0017.CrossRefPubMedGoogle Scholar
  27. Nelson, R., Wiesner-Hanks, T., Wisser, R., & Balint-Kurti, P. (2018). Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics, 19(1), 21–33.  https://doi.org/10.1038/nrg.2017.82.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Noguchi, K., & Gel, Y. R. (2010). Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. Journal of Nonparametric Statistics, 22(7), 897–913.  https://doi.org/10.1080/10485251003698505.CrossRefGoogle Scholar
  29. Noor, N. M., & Zakaria, L. (2018). Identification and characterization of Colletotrichum spp. associated with chili anthracnose in peninsular Malaysia. European Journal of Plant Pathology, 151(4), 961–973.CrossRefGoogle Scholar
  30. Oliveira, C. V. S., Matos, K. S., Albuquerque, D. M. C., Hanada, R. E., & Silva, G. F. (2017). Identification of Colletotrichum isolates from Capsicum chinense in Amazon. Embrapa Amazônia Ocidental-Artigo em periódico indexado (ALICE). Google Scholar
  31. Pakdeevaraporn, P., Wasee, S., Taylor, P. W. J., & Mongkolporn, O. (2005). Inheritance of resistance to anthracnose caused by Colletotrichum capsici in Capsicum. Plant Breeding, 124(2), 206–208.  https://doi.org/10.1111/j.1439-0523.2004.01065.x.CrossRefGoogle Scholar
  32. Park, W. M., Park, S. H., Lee, Y. S., & Ko, Y. H. (1987). Differentiation of Colletotrichum spp. causing anthracnose on Capsicum annuum L. by electrophoretic method. Korean Journal of Plant Pathology, 3, 85–92.Google Scholar
  33. Park, S., Jeong, W. Y., Lee, J. H., Kim, Y. H., Jeong, S. W., Kim, G. S., Bae, D. W., Lim, C. S., Jin, J. S., Lee, S. J., & Shin, S. C. (2012). Determination of polyphenol levels variation in Capsicum annuum L. cv. Chelsea (yellow bell pepper) infected by anthracnose (Colletotrichum gloeosporioides) using liquid chromatography-tandem mass spectrometry. Food Chemistry, 130, 981–985.  https://doi.org/10.1016/j.foodchem.2011.08.026.CrossRefGoogle Scholar
  34. Park, S., Park, A. R., Im, S., Han, Y.-J., Lee, S., Back, K., & Kim, J.-I. (2014). Developmentally regulated Sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits. PLoS One.  https://doi.org/10.1371/journal.pone.0109453.CrossRefGoogle Scholar
  35. Pereira, M. J. Z., Massola Junior, N. S., Sussel, A. A. B., Sala, F. C., Costa, C. P., & Boiteux, L. S. (2011). Reação de acessos de Capsicum e de progênies de cruzamentos interespecíficos a isolados de Colletotrichum acutatum. Horticultura Brasileira, 29, 569–576.  https://doi.org/10.1590/S0102-05362011000400021.CrossRefGoogle Scholar
  36. Phoulivong, S., Cai, L., Chen, H., McKenzie, E. H., Abdelsalam, K., Chukeatirote, E., & Hyde, K. D. (2010). Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Diversity, 44(1), 33–43.  https://doi.org/10.1007/s13225-010-0046-0.CrossRefGoogle Scholar
  37. Pires, A. S., Azinheira, H. G., Cabral, A., Tavares, S., Tavares, D., Castro, M., ... & Talhinhas, P. (2016). Cytogenomic characterization of Colletotrichum kahawae, the causal agent of coffee berry disease, reveals diversity in minichromosome profiles and genome size expansion. Plant Pathology, 65(6), 968–977.  https://doi.org/10.1111/ppa.12479.CrossRefGoogle Scholar
  38. Potnis, N., Minsavage, G., Smith, J. K., Hurlbert, J. C., Norman, D., Rodrigues, R., Stall, R. E., & Jones, J. B. (2012). Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Molecular Plant-Microbe Interactions, 25, 307–320.  https://doi.org/10.1094/MPMI-08-11-0205.CrossRefPubMedGoogle Scholar
  39. Sato, T., & Moriwaki, J. (2013). Molecular re-identification of strains in NIAS Genebank belonging to phylogenetic groups A2 and A4 of the Colletotrichum acutatum species complex. Microbiol Cult Coll, 29, 13–23.Google Scholar
  40. Saxena, A., Raghuwanshi, R., & Singh, H. B. (2016). Elevation of defense network in chilli against Colletotrichum capsici by phyllospheric Trichoderma strain. Journal of Plant Growth Regulation, 35(2), 377–389.  https://doi.org/10.1007/s00344-015-9542-5.CrossRefGoogle Scholar
  41. Silva, S. A. M., Rodrigues, R., Gonçalves, L. S. A., Sudré, C. P., Bento, C. S., Carmo, M. G. F., & Medeiros, A. M. (2014). Resistance in Capsicum spp. to anthracnose affected by different stages of fruit development during pre- and postharvest. Tropical Plant Pathology, 39(4), 335–341.  https://doi.org/10.1590/S1982-56762014000400009.CrossRefGoogle Scholar
  42. Silva, J. R., Chaves, T. P., da Silva, A. R., Barbosa, L. D. F., Costa, J. F., Ramos-Sobrinho, R., et al. (2017). Molecular and morpho-cultural characterization of Colletotrichum spp. associated with anthracnose on Capsicum spp. in northeastern Brazil. Tropical Plant Pathology, 42(4), 315–319.  https://doi.org/10.1007/s40858-017-0151-7.CrossRefGoogle Scholar
  43. Sun, C. Y., Mao, S. L., Zhang, Z. H., Palloix, A., Wang, L. H., & Zhang, B. X. (2015). Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Scientia Horticulturae, 181, 81–85.  https://doi.org/10.1016/j.scienta.2014.10.033.CrossRefGoogle Scholar
  44. Than, P. P., Jeewon, R., Hyde, K. D., Pongsupasamit, S., Mongkolporn, O., & Taylor, P. W. J. (2008). Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathology, 57(3), 562–572.  https://doi.org/10.1111/j.1365-3059.2007.01782.x.CrossRefGoogle Scholar
  45. Tozze Jr, H. J., Massola Jr, N. M., Camara, M. P. S., Gioria, R., Suzuki, O., Brunelli, K. R., ... & Kobori, R. F. (2009). First report of Colletotrichum boninense causing anthracnose on pepper in Brazil. Plant Disease, 93(1), 106-106.  https://doi.org/10.1094/PDIS-93-1-0106A.CrossRefGoogle Scholar
  46. Trethowan, R. M. (2014). Defining a Genetic Ideotype for Crop Improvement. In D. Fleury & R. Whitford (Eds.), Crop Breeding. Methods in Molecular Biology (Methods and Protocols) (p. 1145). New York: Humana Press.Google Scholar
  47. Vieira, A., Diniz, I., Loureiro, A., Pereira, A. P., Silva, M. C., Várzea, V., & Batista, D. (2019). Aggressiveness profiling of the coffee pathogen Colletotrichum kahawae. Plant Pathology, 68(2), 358–368.  https://doi.org/10.1111/ppa.12950.CrossRefGoogle Scholar
  48. Walter, R., Carvalho, V. S., Generoso, A. L., Campbell, G., DaCunha, M., & Rodrigues, R. (2019). Overcoming post-zygotic hybridization barriers in Capsicum annuum var. annuum. Scientia Horticulturae, 246, 227–236.  https://doi.org/10.1016/j.scienta.2018.11.001.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.UENF-Laboratório de Melhoramento Genético VegetalCampos dos GoytacazesBrazil
  2. 2.UFES - Departamento de AgronomiaAlegreBrazil
  3. 3.UniMontes - Departamento de AgronomiaJanaúbaBrazil
  4. 4.UEL - Centro de Ciências AgráriasLondrinaBrazil

Personalised recommendations