In vivo and in vitro screening for resistance against Penicillium allii in garlic accessions

  • María C. Salinas
  • Pablo F. CavagnaroEmail author


Garlic blue mold disease, caused by Penicillium allii, is responsible for important economic losses produced yearly in garlic field crops and in postharvest storage. The identification of genetic resistance sources may help in the management of this disease. The present study investigated in vivo and in vitro antifungal effects of a genetically-diverse garlic collection against P. allii in two growing seasons. Cloves of garlic accessions were inoculated with P. allii conidia, and lesion area and sporulation of the fungus in the clove were estimated as a means to characterize the accessions response to the infection. Significant and continuous variation was found among the accessions (p < 0.001), suggesting a quantitative mode of resistance against P. allii in this garlic collection. ‘Castaño’ and ‘Peteco’ were consistently the most resistant and susceptible genotypes, respectively. Culture media of the fungus supplemented with crude garlic extracts (CGEs) revealed significant inhibition of P. allii growth in vitro by all the garlic accessions, with fungal-growth inhibition being dose-dependent up to a concentration of 20–26% (v/v), beyond which the CGEs became fungicidal. These data indicate that garlic bulbs have antifungal compounds, which at high concentration can be fungicidal for P. allii. CGEs of ‘Castaño’ and a few other accessions were consistently the more inhibitory extracts. Total phenolics and pyruvate (an estimator of the total thiosulfinates content) concentration in the garlic bulbs was not associated with P. allii resistance in vivo, but their content in the CGEs correlated significantly and negatively with the fungal growth in vitro (r = −0.38 to −0.72), suggesting that these compounds have antifungal effect, but their content is not the main factor conditioning P. allii resistance in vivo.


Allium sativum Blue mold Penicillium allii Disease resistance Thiosulfinates Phenolic compounds 



The authors gratefully acknowledge Jorge Valdez and Jose Luis Burba (INTA La Consulta) for providing the P. allii isolate and the garlic materials used in this study, respectively. This work was supported by grant A008 from the ‘Secretaría de Ciencia, Técnica y Posgrado’ of the National University of Cuyo, Mendoza, Argentina.

Compliance with ethical standards

The authors declare that the research complies with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2019_1875_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)
10658_2019_1875_MOESM2_ESM.docx (1.1 mb)
ESM 2 (DOCX 1155 kb)


  1. Adrian, M., & Jeandet, P. (2012). Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant-pathogen interactions. Fitoterapia, 83, 1345–1350.PubMedCrossRefGoogle Scholar
  2. Allen, J. (2009). Garlic production factsheet. Ontario Ministry of Agriculture, Food and Rural Affairs, order no. 09-011W AGDEX 258/13, 8 pp.Google Scholar
  3. Block, E. (2010). Garlic and other alliums: The lore and the science. Cambridge: Royal Society of Chemistry.Google Scholar
  4. Boiteux, J., Vargas, C. S., Pizzuolo, P., Lucero, G., & Silva, M. F. (2014). Phenolic characterization and antimicrobial activity of folk medicinal plant extracts for their applications in olive production. Electrophoresis, 35, 1709–1718.PubMedCrossRefGoogle Scholar
  5. Burba, J. L. (2008). Los grupos varietales del ajo (Allium sativum L.). Contribución para su entendimiento. Horticultura Argentina, 27, 20–27.Google Scholar
  6. Burba, J. L., Casali, V. W., & Buteler, M. I. (1993). Intensidad de la dormición como parámetro fisiológico para agrupar cultivares de ajo (Allium sativum L.). Horticultura Argentina, 12, 47–52.Google Scholar
  7. Cavagnaro, P. F., Camargo, A., Piccolo, R. J., Garcia Lampasona, S., Burba, J. L., & Masuelli, R. W. (2005). Resistance to Penicillium hirsutum Dierckx in garlic accessions. European Journal of Plant Pathology, 112, 195–199.CrossRefGoogle Scholar
  8. Cavagnaro, P. F., Camargo, A., Galmarini, C. R., & Simon, P. W. (2007). Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. Journal of Agricultural and Food Chemistry, 55, 1280–1288.PubMedCrossRefGoogle Scholar
  9. Chong, J., Poutaraud, A., & Hugueney, P. (2009). Metabolism and roles of stilbenes in plants. Plant Science, 177, 143–155.CrossRefGoogle Scholar
  10. Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2014). InfoStat, versión 2014. Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba.Google Scholar
  11. Dugan, F. M., Hellier, B. C., & Lupien, S. L. (2007). Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington state. Journal of Phytopathology, 155, 437–445.CrossRefGoogle Scholar
  12. Dugan, F. M., Hellier, B. C., & Lupien, S. L. (2011). Resistance to Penicillium allii in accessions from a National Plant Germplasm System Allium collection. Crop Protection, 30, 483–488.CrossRefGoogle Scholar
  13. Dugan, F. M., Lupien, S. L., Vahling-Armstrong, C. M., Chastagner, G. A., & Schroeder, B. K. (2014). Host ranges of north American isolates of Penicillium causing blue mold of bulb crops. Crop Protection, 64, 129–136.CrossRefGoogle Scholar
  14. Durbin, R., & Uchytil, T. (1971). The role of allicin in the resistance of garlic to Penicillium spp. Phytopathologia Mediterranea, 10, 227–230.Google Scholar
  15. Etoh, T., & Simon, P. W. (2002). Diversity, fertility and seed production of garlic. In H. D. Rabinowitch & L. Currah (Eds.), Allium Crop Sciences: Recent Advances (pp. 101–117). Wallingford: CABI.CrossRefGoogle Scholar
  16. Fratianni, F., Riccardi, R., Spigno, P., Ombra, M., Cozzolino, A., Tremonte, P., Coppola, R., & Nazzaro, F. (2016). Biochemical characterization and antimicrobial and antifungal activity of two endemic varieties of garlic (Allium sativum L.) of the Campania region, southern Italy. Journal of Medicinal Food, 19, 686–691.PubMedCrossRefGoogle Scholar
  17. Galmarini, C. R., Goldman, I. L., & Havey, M. J. (2001). Genetic analysis of correlated solids, flavor and health-enhancing traits in onion (Allium cepa L.). Molecular Genetics and Genomics, 265, 543–551.PubMedCrossRefGoogle Scholar
  18. García Lampasona, S., Asprelli, P., & Burba, J. L. (2012). Genetic analysis of garlic (Allium sativum L.) germplasm collection from Argentina. Scientia Horticulturae, 138, 183–189.CrossRefGoogle Scholar
  19. Goldman, I. L., Kopelberg, M., Debaene, J. P., & Schwartz, B. S. (1996). Antiplatelet activity in onion (Allium cepa L.) is sulfur dependent. Thrombosis and Haemostasis, 76, 450–452.PubMedPubMedCentralGoogle Scholar
  20. Jenderek, M. M., & Zewdie, Y. (2005). Within- and between-family variability for important bulb and plant traits among sexually derived progenies of garlic. HortScience, 40, 1234–1236.CrossRefGoogle Scholar
  21. Kamenetsky, R. (2007). Garlic: Botany and horticulture. Horticultural Reviews, 33, 123–172.Google Scholar
  22. Kamenetsky, R., London, Shafir, I., Khassanov, F., Kik, C., Van Heusden, A. W., Vrielink-Van Ginkel, M., Burger-Meijer, K., Auger, J., Arnault, I., & Rabinowitch, H. D. (2005). Diversity in fertility potential and organo-Sulphur compounds among garlics from Central Asia. Biodiversity and Conservation, 14, 281–295.CrossRefGoogle Scholar
  23. Kamenetsky, R., Faigenboim, A., Shemesh-Mayer, E., Ben Michael, T., Gershberg, C., Kimhi, S., Esquira, I., Rohkin Shalom, S., Eshel, D., Rabinowitch, H. D., & Sherman, A. (2015). Integrated transcriptome catalogue and organspecific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics, 16, 12.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kushalappa, A. C., & Gunnaiah, R. (2013). Metabolo-proteomics to discover plant biotic stress resistance genes. Trends in Plant Science, 18, 522–531.PubMedCrossRefGoogle Scholar
  25. Lanzotti, V., Bonanomi, G., & Scala, F. (2013). What makes Allium species effective against pathogenic microbes? Phytochemistry Reviews, 12, 751–772.CrossRefGoogle Scholar
  26. Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The evolution of fungicide resistance. Advances in Applied Microbiology, 90, 29–92.PubMedCrossRefGoogle Scholar
  27. Meyer, J., Berger, D. K., Christensen, S. A., & Murray, S. L. (2017). RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biology, 17, 197.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Petropoulos, S., Fernandez, Â., Barros, L., Ciric, A., Sokovic, M., & Ferreira, I. (2018). Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chemistry, 245, 7–12.PubMedCrossRefGoogle Scholar
  29. Pooler, M. R., & Simon, P. W. (1993). Garlic flowering in response to clone, photoperiod, growth temperatures and cold storage. HortScience, 28, 1085–1086.CrossRefGoogle Scholar
  30. Rotem, N., Shemesh, E., Peretz, Y., Akad, F., Edelbaum, O., Rabinowitch, H. D., Sela, I., & Kamenetsky, R. (2007). Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. Journal of Experimental Botany, 58, 1133–1141.PubMedCrossRefGoogle Scholar
  31. Rotem, N., David Schwartz, R., Peretz, Y., Sela, I., Rabinowitch, H. D., Flaishman, M., & Kamenetsky, R. (2011). Flower development in garlic: The ups and downs of gaLFY expression. Planta, 233, 1063–1072.CrossRefGoogle Scholar
  32. Schwimmer, S., & Weston, W. J. (1961). Enzymatic development of pyruvic acid in onion as a measure of pungency. Journal of Agricultural and Food Chemistry, 9, 301–304.CrossRefGoogle Scholar
  33. Shemesh Mayer, E., Winiarczyk, K., Błaszczyk, L., Kosmala, A., Rabinowitch, H. D., & Kamenetsky, R. (2013). Male gametogenesis and sterility in garlic (Allium sativum L.): Barriers on the way to fertilization and seed production. Planta, 237, 103–120.PubMedCrossRefGoogle Scholar
  34. Shemesh, E., Scholten, O., Rabinowitch, H. D., & Kamenetsky, R. (2008). Unlocking variability: Inherent variation and developmental traits of garlic plants originated from sexual reproduction. Planta, 227, 1013–1024.PubMedCrossRefGoogle Scholar
  35. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  36. Smalley, E. B., & Hansen, H. N. (1962). Penicillium decay of garlic. Phytopathology, 57, 666–677.Google Scholar
  37. Tohidfar, M., & Khosravi, S. (2015). Transgenic crops with an improved resistance to biotic stresses. A review. Biotechnology, Agronomy. Society and Environment, 19, 62–70.Google Scholar
  38. Treutter, D. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4, 147–157.CrossRefGoogle Scholar
  39. Valdez, J. G., & Piccolo, R. J. (2006). Use of spectrophotometry as a tool to quantify the sporulation of Penicillium allii in garlic lesions. Fitopatologia Brasileira, 31, 583–585.CrossRefGoogle Scholar
  40. Valdez, J. G., Makuch, M. A., Ordovini, A. F., Frisvad, J. C., Overy, D. P., Masuelli, R. W., & Piccolo, R. J. (2009). Identification, pathogenicity and distribution of Penicillium spp. isolated from garlic in two regions in Argentina. Plant Pathology, 58, 352–361.CrossRefGoogle Scholar
  41. Wang, F., Zhang, F., Chen, M., Liu, Z., Zhang, Z., Fu, J., & Ma, Y. (2017). Comparative transcriptomics reveals differential gene expression related to Colletotrichum gloeosporioides resistance in the octoploid strawberry. Frontiers in Plant Science, 8, 779.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Yang, Q., Balint-Kurti, P., & Xu, M. (2017). Quantitative disease resistance: Dissection and adoption in maize. Molecular Plant, 10, 402–413.PubMedCrossRefGoogle Scholar
  43. Zheng, S.-J., Hanken, B., Ahn, Y. K., Krens, F. A., & Kik, C. (2004). The development of a reproducible Agrobacterium tumefaciens transformation system for garlic (Allium sativum L.) and the production of transgenic garlic resistant to beet armyworm (Spodoptera exigua Hübner). Molecular Breeding, 14, 293–307.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.National Council of Scientific and Technical Research (CONICET)MendozaArgentina
  2. 2.National Institute of Agricultural Technology (INTA) – E.E.A. La ConsultaMendozaArgentina
  3. 3.Faculty of Agricultural SciencesNational University of CuyoMendozaArgentina

Personalised recommendations