European Journal of Plant Pathology

, Volume 156, Issue 1, pp 111–121 | Cite as

Characterisation of the interaction of Pseudomonas putida and Pseudomonas tolaasii with Trichoderma aggressivum

  • Dejana Kosanovic
  • Gerard Sheehan
  • Helen Grogan
  • Kevin KavanaghEmail author


Green mould disease is caused by Trichoderma aggressivum which colonizes mushroom compost and reduces yield. Two Pseudomonas species are associated with mushroom compost: Pseudomonas putida, which stimulates mushroom pinning, and Pseudomonas tolaasii which has a negative effect on crop production. The aim of this work was to characterize T. aggressivum – Pseudomonas interactions as these may be important factors in the development of green mould disease. P. tolaasii supernatant inhibited growth by 57% but P. putida stimulated growth of T.aggressivum by 44%. Tolaasin production was identified in P. tolaasii cultures with a peak at 96 h. Fluorescent microscopy examination of T. aggressivum hyphae revealed that exposure to P. tolaasii supernatant decreased mycelial formation while increasing the abundance of conidia. Label free proteomic analysis of changes in the abundance of T. aggressivum proteins indicated that exposure to P. tolaasii supernatant lead to an oxidative stress response and catabolic enzyme activation (mitochondrial import inner membrane translocase complex (5.7-fold), oxidoreductase (5.2-fold), glucoamylase (5.1-fold)). Exposure of T. aggressivum to P. putida supernatant lead to an increase in the abundance of proteins associated with growth and development (structural constituents of ribosome (20-fold), H/ACA ribonucleoprotein complex subunit (18-fold), DNA binding and nucleosome assembly protein (5.3-fold), and prefoldin (5-fold)). These results indicate that exposure to P. putida can stimulate the growth of T. aggressivum and this interaction may be an important factor in increasing green mould disease in mushroom crops and so reducing yield.


Agaricus Trichoderma Proteomics Pseudomonas 



False Discovery Rates


gene ontology


statistically significant differentially abundant


differentially expressed proteins (DEP)


Nutrient broth





DK is a Postdoctoral Fellow supported by Irish Research Council. GS is the recipient of a Maynooth University Doctoral Hume scholarship. Q-Exactive mass spectrometer was funded under the SFI Research Infrastructure Call 2012; Grant Number: 12/RI/2346.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Human or animals participants

This article does not contain any study with human participants or animals performed by the authors.

Supplementary material

10658_2019_1867_MOESM1_ESM.pdf (7.7 mb)
ESM 1 (PDF 7834 kb)


  1. Barribeau, S. M., Sadd, B. M., Du Plessis, L., & Schmid-Hempel, P. (2014). Gene expression differences underlying genotype-by-genotype specificity in a host–parasite system. Proceedings of the National Academy of Sciences, 111, 3496–3501.Google Scholar
  2. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1), 289–300.Google Scholar
  3. Chang, S.-T., & Miles, P. G. (2004). Mushrooms. In Cultivation, nutritional value, medicinal effect, and environmental impact (2nd ed., p. 451). Boca Raton, CRC Press.
  4. Cho, K.-H., Kim, S.-T., & Kim, Y.-K. (2007). Purification of a pore-forming peptide toxin, Tolaasin, produced by Pseudomonas tolaasii 6264. Journal of Biochemistry and Molecular Biology, 40(1), 113–118.PubMedGoogle Scholar
  5. Clift, A. D., & Shamshad, A. (2009). Modeling mites, moulds and mushroom yields in the Australian mushroom industry. In R. S. Anderssen, R. D. Braddock, & L. T. H. Newham (Eds.), Proceedings of the 18th world IMACS/MODSIM 09 congress (pp. 491–497). Cairns: IMACS/MODSIM.Google Scholar
  6. Côté, R. G., Griss, J., Dianes, J. A., Wang, R., Wright, J. C., van den Toorn, H. W. P., et al. (2012). The PRoteomics IDEntification (PRIDE) converter 2 framework: An improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Molecular & Cellular Proteomics, 11, 1682–1689.Google Scholar
  7. Fletcher, J. T., & Gaze, R. H. (2008). Mushroom Pest and disease control. London: Manson Publishing.Google Scholar
  8. Geels, F. P. (1997). Rondetafel – bijeenkomst over Trichoderma. Champignoncultuur., 41, 13.Google Scholar
  9. Godfrey, S. A. C., Harrow, S. A., Marshall, J. W., & Klena, J. D. (2001). Characterization by 16S rRNA sequence analysis of Pseudomonas causing blotch disease of cultivated Agaricus bisprus. Applied and Environmental Microbiology, 67(9), 4316–4323.PubMedPubMedCentralGoogle Scholar
  10. Grewal, S. I. S., & Rainey, P. B. (1991). Phenotypic variation of Pseudomonas putida and P. tolizasii affects the chemotactic response to Agaricus bisporus mycelial exudate. Journal of General Microbiology, 137, 2761–2768.PubMedGoogle Scholar
  11. Grogan, H. M. (2008). Challenges facing mushroom disease control in the 21st century. In J. I. Lelley & J. A. Buswell (Eds.), Proceeding of the sixth international conference on mushroom biology and mushroom products (pp. 120–127). Bonn, Germany: WSMBMP.Google Scholar
  12. Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I. S., Kubicek, C. P., Nagy, A., Nagy, E., Vagvolgyi, C., & Kredics, L. (2007). Green mold diseases of Agaricus and Pleurotus are caused by related but phylogenetically different Trichoderma species. Phytopathology., 97, 532–537.PubMedGoogle Scholar
  13. Hatvani, L., Sabolic, P., Koscube, S., Kredics, L., Vagvolgyi, C., Kaliterna, J., Ivic, D., Dermic, E., & Kosalec, I. (2012). The first report on mushroom green mould in Croatia. Archives of Industrial Hygiene and Toxicology, 63, 481–487.PubMedGoogle Scholar
  14. Hermosa, M. R., Grondona, I., & Monte, E. (1999). Isolation of Trichoderma harzianum Th2 from commercial mushroom compost in Spain. Plant Disease, 83, 591.PubMedGoogle Scholar
  15. Hutchison, M. I., & Johnstone, K. (1993). Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiological and Molecular Plant Pathology, 42, 273–384.Google Scholar
  16. Kosanovic, D., Potocnik, I., Duduk, B., Vukojevic, J., Stajic, M., Rekanovic, E., & Milijasevic-Marcic, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. The Annals of Applied Biology, 163, 218–230.Google Scholar
  17. Kosanovic, D., Potocnik, I., Vukojevic, J., Stajic, M., Rekanovic, E., Stepanovic, M., & Todorovic, B. (2015). Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farms in Serbia. Journal of Environmental Science and Health Part B Pesticides Food Contaminants and Agricultural Wastes., 50(8), 607–613.Google Scholar
  18. Kredics, L., Jimenez, L.G., Naeimi, S., Czifra, D., Urban, P, Manczinger, L., Vagvolgyi, C., Hatvani L. (2010) A chalenge to mushroom growers: the green mould disease of cultivated champignons. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. pp. 295–305.Google Scholar
  19. Krupke, O. A., Castle, A. J., & Rinker, D. L. (2003). The north American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycological Research, 107(12), 1467–1475.PubMedGoogle Scholar
  20. Maher, A., Staunton, K., & Kavanagh, K. (2018). Analysis of the effect of temperature on protein abundance in Demodex-associated Bacillus oleronius. Pathogens and Disease, 75, fty032. Scholar
  21. Mamoun, M. L., Iapicco, R., Savoie, J.-M., & Olivier, J. M. (2000). Green mould disease in France: Trichoderma harzianum Th2 and other species causing damage on mushroom farms. Mushroom Science., 15, 625–632.Google Scholar
  22. Mc Namara, L., Carolan, J. C., Griffin, C. T., Fitzpatrick, D., & Kavanagh, K. (2017). Analysis of the effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth. Galleria mellonella. Journal of Insect Physiology., 100, 82–92.PubMedGoogle Scholar
  23. Mohammad, A., & Sabaa, A. K. (2015). In virto and in vivo impact of some Pseudomonas spp. on growth and yield of cultivated mushroom (Agaricus bisporus). Egyptian Journal of Experimental Biology (Botany)., 11(2), 163–167.Google Scholar
  24. Noble, R., Dobrovin-Pennington, A., Hobbs, P. J., Pederby, J., & Rodger, A. (2009). Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia., 101(5), 583–591. Scholar
  25. Nutkins, J. C., Mortishire-Smith, R. J., Packman, L. C., Brodey, C. L., Rainey, P. B., Johnstone, K., & Williams, D. H. (1991). Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. Journal of the American Chemical Society, 113, 2621–2627.Google Scholar
  26. O’Brien, M., Kavanagh, K., & Grogan, H. (2017). Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. European Journal of Plant Pathology, 147(1), 199–209.Google Scholar
  27. Osdaghi, E., Martins, S. J., Ramos-Sepulveda, L., Rocha Vieira, F., Pecchia, J. A., Meigs Beyer, D., Bell, T. H., Yang, Y., Hockett, K. L., & Bull, C. T. (2019). 100 years since Tolaas: Bacterial blotch of mushrooms in the 21st century. Scholar
  28. Pandin, C., Le Coq, D., Deschamps, J., Vedic, R., Rousseau, T., Aymerich, S., & Briandet, R. (2018). Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against green mould disease. Journal of Biotechnology, 278, 10–19.PubMedGoogle Scholar
  29. Park, J. Y., & Agnihotri, V. P. (1969). Bacterial metabolites trigger sporophore formation in Agaricus bisporus. Nature., 222, 984.PubMedGoogle Scholar
  30. Potocnik, I., Vukojevic, J., Stajic, M., Kosanovic, D., Rekanovic, E., Stepanovic, M., & Milijasevic-Marcic, S. (2012). Impact of fungicides used for wheat treatment on button mushroom cultivation. Journal of Pesticides and Phytomedicine., 27(1), 9–14. Scholar
  31. Potocnik, I., Rekanovic, E., Todorovic, B., Lukovic, J., Paunovic, D., Stanojevic, O., & Milijasevic-Marcic, S. (2019). The effects of casing soil treatment with bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Journal of Pesticides and Phytomedicine., 34(1), 53–60. Scholar
  32. Rainey, P. B. (1991). Effect of Pseudomonas putida on hyphal growth of Agricus bisporus. Mycological Research, 95, 699–704.Google Scholar
  33. Rinker, D. L. (1993). Disease management strategies for Trichoderma mould. Mushroom World., 4, 3–5.Google Scholar
  34. Romaine, C. P., Royse, D. J., Wuest, P. J., & Beyer, D. M. (1996). Mushroom green mould: Cause, edaphic factors and control. Mushroom News., 44, 20–23.Google Scholar
  35. Romero-Arenas, O., Lara, M. H., Huato, M. A. D., Hernandez, F. D., & Victoria, D. A. A. (2009). The characteristics of Trichoderma harzianum as a limiting agent in edible mushrooms. Revista Colombiana de Biotecnología, 11, 143–151.Google Scholar
  36. Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In D. C. Zied & A. Pardo-Giménez (Eds.), Edible and medicinal mushrooms: Technology and applications (1st ed., pp. 2–13). Wiley.
  37. Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A., Petrini, O. (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146–170.PubMedGoogle Scholar
  38. Saxon, E. B., Jackson, R. W., Bhumbra, S., Smith, T., & Sockett, R. E. (2014). Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiology, 14, 163. Scholar
  39. Seaby, D. A. (1987). Infection of mushroom compost by Trichoderma species. Mushroom Journal., 179, 355–361.Google Scholar
  40. Seaby, D. A. (1996). Investigation of the epidemiology of green mold of mushroom (Agaricus bisporus) compost caused by Trichoderma harzianum. Plant Pathology, 45, 913–923.Google Scholar
  41. Sinden, J., & Hauser, E. (1953). Nature and control of three mildew diseases of mushrooms in America. Mushroom Science., 2, 177–180.Google Scholar
  42. Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J. M., & Wichers, H. J. (1999). Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiology Reviews, 23(5), 591–614.PubMedGoogle Scholar
  43. Soler-Rivas, C., Arpin, N., Olivier, J. M., & Wichers, H. J. (2000). Discoloration and tyrosinase activity in Agaricus bisporus fruit bodies infected with various pathogens. Mycological Research, 104(3), 351–356.Google Scholar
  44. Szczech, M., Staniaszek, M., Habdas, H., Ulinski, Z., & Szymanski, J. (2008). Trichoderma spp. – The cause of green mould on polish mushroom farms. Vegetable Crops Research Bulletin., 69, 105–114.Google Scholar
  45. Tolaas, A. G. (1915). A bacterial disease of cultivated mushrooms. Phytopathology., 5, 51–54.Google Scholar
  46. Watson, A. K., Williams, T. A., Williams, B. A., Moore, K. A., Hirt, R. P., & Embley, T. M. (2015). Transcriptomic profiling of host-parasite interactions in the microsporidian Trachipleistophora hominis. BMC Genomics, 16, 975–983.Google Scholar
  47. Wells, J. M., Sapers, G. M., Fett, W. F., Butterfield, J. E., Jones, J. B., Bouzar, H., & Miller, F. C. (1996). Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. ‘reactans’, and P. ‘gingeri’. Phytopathology, 86, 1098–1104.Google Scholar
  48. Wong, W. C., Fletcher, J. T., Unsworth, B. A., & Preece, T. F. (1982). A note on ginger blotch, a new bacterial disease of the cultivated mushroom. Agaricus bisporus. Journal of Applied Bacteriology., 52, 43–48.Google Scholar
  49. Yates, J. R., Ruse, C. I., & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annual Review of Biomedical Engineering, 11, 49–79.PubMedGoogle Scholar
  50. Young, J. M. (1970). Drippy gill: A bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n.sp. New Zealand Journal of Agricultural Research, 13(4), 977–990.Google Scholar
  51. Zarenejad, F., Yakhchali, B., & Rasooli, I. (2012). Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World Journal of Microbiology and Biotechnology, 28(1), 99–104.PubMedGoogle Scholar
  52. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C., & Yates III, J. R. (2013). Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews, 113, 2343–2394.PubMedPubMedCentralGoogle Scholar
  53. Zhu, J.-Y., Yang, P., Zhang, Z., Wu, G.-X., & Yang, B. (2013). Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS One, 8, e54411.PubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Dejana Kosanovic
    • 1
  • Gerard Sheehan
    • 1
  • Helen Grogan
    • 2
  • Kevin Kavanagh
    • 1
    Email author
  1. 1.Department of BiologyMaynooth UniversityMaynoothIreland
  2. 2.Teagasc, Horticulture Development DepartmentAshtown Research CentreDublinIreland

Personalised recommendations