Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 4, pp 1319–1332 | Cite as

Venturia inaequalis trapped: molecular quantification of airborne inoculum using volumetric and rotating arm samplers

  • Sanne Torfs
  • Kris Van Poucke
  • Jelle Van Campenhout
  • An Ceustermans
  • Sarah Croes
  • Dany Bylemans
  • Wendy Van Hemelrijck
  • Wannes Keulemans
  • Kurt HeungensEmail author
Article
  • 66 Downloads

Abstract

Site-specific high throughput monitoring of airborne ascospores of Venturia inaequalis, the causal agent of apple scab, can improve existing warning systems. A new qPCR assay was developed to quantify ascospores collected by a simple rotating-arm spore sampler. The qPCR assay was highly specific and sensitive, with a limit of quantification of 20 ascospores per sample. The new detection system was compared to sampling with a traditional Burkard volumetric spore trap and to microscopic quantification. During controlled ascospore release experiments in a closed environment, strong correlations (ρ: 0.96 to 0.99) were observed between the two types of samplers and the two methods of quantification but significantly larger numbers of spores (log difference: 0.43 to 0.69) were obtained when using the rotating-arm sampler and when using molecular quantification. During comparisons under outdoor conditions over a three-year period, reasonable correlations between the techniques (average ρ = 0.61) were observed. When rotating-arm samplers operate continuously they can get saturated but their counts still correlated better with those from the Burkard sampler than when they only operate during rain and until two hours after. This suggests that ascospores were also captured outside of rain events. Based on these comparisons, molecular quantification of spores captured with the rotating-arm sampler appears to be a sensitive and reliable method to determine airborne ascospores of V. inaequalis and holds promise as a tool to guide targeted fungicide applications in commercial orchards as well as to increase our knowledge of the aerobiology of this pathogen.

Keywords

qPCR Rotating-arm spore trap Burkard spore trap Aerial spore sampling Apple scab 

Notes

Acknowledgements

This research was funded by Flanders Innovation & Entrepreneurship (VLAIO) with co-funding from industry and growers. The authors thank Valerie Caffier for providing the isolate of Venturia asperata and Amelie Grammen for providing isolates of Colletotrichum acutatum, Neofabraea sp. and Nigrospora sp. We also thank Fran Focquet and Thomas Goedefroit for their technical help and Miriam Levenson for English language editing.

Funding information

This study was funded by grant “LA Traject 135078” from Flanders Innovation & Entrepreneurship (VLAIO), which includes co-funding from industry and growers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

References

  1. Agrios, G. N. (2005). Plant Pathology 5th Edition. Elsevier (5th ed.). Elsevier Academic Press. doi: https://doi.org/10.1016/j.plantsci.2005.02.019
  2. Ahmed, N., Englund, J. E., Åhman, I., Lieberg, M., & Johansson, E. (2011). Perception of pesticide use by farmers and neighbors in two periurban areas. Science of the Total Environment, 412–413, 77–86.  https://doi.org/10.1016/j.scitotenv.2011.10.022.CrossRefPubMedGoogle Scholar
  3. Avermaete, T., Keulemans, W., Claes, W., De Tavernier, J., Geeraerd, A., Govers, G., Honnay, O., Maertens, M., Mathijs, E., Matthys, C., Relaes, J., Segers, Y., Van Malcot, W., & Vanpaemel, G. (2017). Wat met Ons Voedsel? LannooCampus.Google Scholar
  4. Aylor, D. E. (1993). Relative collection efficiency of Rotorod and Burkard spore samplers for airborne Venturia inaequalis ascospores. The American Phytopathological Society, 83(10), 1116–1119.CrossRefGoogle Scholar
  5. Billones-Baaijens, R., Ramón, J., Ramón’urbez-Torres, R., Ayres, M., & Sosnowski, M. (2018). Molecular methods to detect and quantify Botryosphaeriaceae inocula associated with grapevine dieback in Australia, 102(8), 1489–1499. doi: https://doi.org/10.1094/PDIS-11-17-1854-RE.CrossRefGoogle Scholar
  6. Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K. M., & Templeton, M. D. (2011). Venturia inaequalis: The causal agent of apple scab. Molecular Plant Pathology, 12(2), 105–122.  https://doi.org/10.1111/j.1364-3703.2010.00656.x.CrossRefPubMedGoogle Scholar
  7. Cao, X., Yao, D., Zhou, Y., West, J. S., Xu, X., Luo, Y., Ding, K., Fan, J., & Duan, X. (2016). Detection and quantification of airborne inoculum of Blumeria graminis f. sp. tritici using quantitative PCR. European Journal of Plant Pathology, 146(1), 225–229.CrossRefGoogle Scholar
  8. Carisse, O., McCartney, H. A., Gagnon, J. A., & Brodeur, L. (2005). Quantification of airborne inoculum as an aid in the management of leaf blight of onion caused by Botrytis squamosa. The American Phytopathological Society, 89(7), 726–733.  https://doi.org/10.1094/PD-89-0726.CrossRefGoogle Scholar
  9. Carisse, Odile, Tremblay, D.-M., Jobin, T., & Walker, A. S. (2010). Disease decision support systems: Their impact on disease management and durability of fungicide effectiveness. In Fungicides (pp. 177–200). InTech. doi: https://doi.org/10.5772/13335 Google Scholar
  10. Chandelier, A., Helson, M., Dvorak, M., & Gischer, F. (2014). Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays. Plant Pathology, 63(6), 1296–1305.  https://doi.org/10.1111/ppa.12218.CrossRefGoogle Scholar
  11. Crisp, H. C., Gomez, R. A., White, K. M., & Quinn, J. M. (2013). A side-by-side comparison of Rotorod and Burkard pollen and spore collections. Annals of Allergy, Asthma & Immunology, 111(2), 118–125.  https://doi.org/10.1016/J.ANAI.2013.05.021.CrossRefGoogle Scholar
  12. Daniëls, B., De Landtsheer, A., Dreesen, R., Davey, M. W., & Keulemans, J. (2012). Real-time PCR as a promising tool to monitor growth of Venturia spp . In scab-susceptible and -resistant apple leaves. European Journal of Plant Pathology, 134, 821–833.  https://doi.org/10.1007/s10658-012-0058-6.CrossRefGoogle Scholar
  13. De Backer, M. (2012). Characterization and detection of Puccinia horiana on chrysanthemum for resistance breeding and sustainable control. Phd thesis, Ghent University, Belgium.Google Scholar
  14. Frenz, D. A. (1999). Comparing pollen and spore counts collected with the Rotorod sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 83, 341–349.CrossRefGoogle Scholar
  15. Frenz, D. A. (2000). The effect of windspeed on pollen and spore counts collected with the Rotorod sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 85(5), 392–394.  https://doi.org/10.1016/S1081-1206(10)62553-7.CrossRefGoogle Scholar
  16. Gadoury, D. M., & MacHardy, W. E. (1982). Preparation and interpretation of squash mounts od pseudotheciia of Venturia inaequalis. Phytopathology, 72(1), 92–95.CrossRefGoogle Scholar
  17. Gadoury, D. M., Stensvand, A., & Seem, R. C. (1998). Influence of light, relative humidity, and maturity of populations on discharge of ascospores of Venturia inaequalis. Phytopathology, 88(9), 902–909.  https://doi.org/10.1094/PHYTO.1998.88.9.902.CrossRefPubMedGoogle Scholar
  18. Giraud, T., Gladieux, P., & Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology & Evolution, 25, 387–395.  https://doi.org/10.1016/j.tree.2010.03.006.CrossRefGoogle Scholar
  19. Gusberti, M., Patocchi, A., Gessler, C., & Broggini, G. A. L. (2012). Quantification of Venturia inaequalis growth in Malus x Domestica with quantitative real-time polymerase chain reaction, (December), 1791–1797.Google Scholar
  20. Heffer, M. J., Ratz, J. D., Miller, D. J., & Day, J. H. (2005). Comparison of the Rotorod to other air samplers for the determination of Ambrosia artemisiifolia pollen concentrations conducted in the environmental exposure unit. Aerobiologia, 21(3–4), 233–239.  https://doi.org/10.1007/s10453-005-9007-6.CrossRefGoogle Scholar
  21. Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6, 986–994.CrossRefGoogle Scholar
  22. Holb, I. J. (2008). Timing of first and final sprays against apple scab combined with leaf removal and pruning in organic apple production. Crop Protection, 27, 814–822.  https://doi.org/10.1016/j.cropro.2007.11.009.CrossRefGoogle Scholar
  23. Irdi, G. A., Jones, J. R., & White, C. M. (2002). Pollen and fungal spore sampling and analysis. Statistical evaluations. Grana, 41(1), 44–47.  https://doi.org/10.1080/00173130260045495.CrossRefGoogle Scholar
  24. Klosterman, S. J., Anchieta, A., McRoberts, N., Koike, S. T., Subbarao, K. V., Voglmayr, H., Choi, Y.-J., Thines, M., & Martin, F. N. (2014). Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii). The American Phytopathological Society, 104(12), 1349–1359.  https://doi.org/10.1094/PHYTO-02-14-0054-R.CrossRefGoogle Scholar
  25. Lacey, M. E., & West, J. S. (2006). The Air Spora. Springer. doi: https://doi.org/10.1007/s13398-014-0173-7.2
  26. Latorre, F., Romero, E. J., & Mancini, M. V. (2008). Comparative study of different methods for capturing airborne pollen, and effects of vegetation and meteorological variables. Aerobiologia, 24, 107–120.  https://doi.org/10.1007/s10453-008-9090-6.CrossRefGoogle Scholar
  27. MacHardy, William E. (1996). Apple scab : biology, epidemiology, and management. APS Press. https://my.apsnet.org/ItemDetail?iProductCode=42066.
  28. MacHardy, W. E., & Gadoury, D. M. (1986). Patterns of ascospore discharge by Venturia inaequalis. The American Phytopathological Society, 76(10), 985–990.CrossRefGoogle Scholar
  29. MacHardy, W. E., & Gadoury, D. M. (1989). A revision of Mill’s criteria for predicting apple scab infection periods. Phytopathology, 79(3), 304–310.CrossRefGoogle Scholar
  30. Meitz-Hopkins, J. C., von Diest, S. G., Koopman, T. A., Bahramisharif, A., & Lennox, C. L. (2014). A method to monitor airborne Venturia inaequalis ascospores using volumetric spore traps and quantitative PCR. European Journal of Plant Pathology, 140(3), 527–541.CrossRefGoogle Scholar
  31. Mills, W. D. (1944). Efficient use of sulfur dusts and sprays during rain to control apple scab. New York State College of Agriculture Cornell Ext. Bul., 630, 4.Google Scholar
  32. Mills, W., & Laplante, A. (1954). Diseases and insects in the orchard. Cornell University Ext. Bull., 711, 21–27.Google Scholar
  33. Rosenberger, D. (2016). RIMpro as a Tool for Management of Apple Scab. https://blogs.cornell.edu/plantpathhvl/files/2016/01/RIMpro-as-a-Tool-for-Scab-Mgmt-15hf9bc.pdf.
  34. Rossi, V., Ponti, I., Marinelli, M., Giosuè, S., & Bugiani, R. (2001). Environmental factors influencing the dispersal of Venturia inaequalis ascospores in the orchard air. Journal of Phytopathology, 149(1), 11–19.CrossRefGoogle Scholar
  35. San-Blas, G., & Calderone, R. A. (2008). Pathogenic Fungi: Insights in Molecular Biology. Caister Academic Press.Google Scholar
  36. Stensvand, A., Amundsen, T., Semb, L., Gadoury, D. M., & Seem, R. C. (1998). Discharge and dissemination of ascospores by Venturia inaequalis during dew. Plant Disease, 82(7), 761–764.CrossRefGoogle Scholar
  37. Sutton, T. B., & Jones, A. L. (1976). Evaluation of four spore traps for monitoring discharge of ascospores of Venturia inaequalis. Phytopathology, 66(4), 453–456.CrossRefGoogle Scholar
  38. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.  https://doi.org/10.1093/molbev/mst197.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tormo-molina, R., Rodriguez, A. M., & Palacios, I. S. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst sporetraps. Earobiologia, 12(December), 161–166.  https://doi.org/10.1007/BF02447407.CrossRefGoogle Scholar
  40. Turenne, C. Y., Sanche, S. E., Hoban, D. J., Karlowsky, J. A., & Kabani, A. M. (1999). Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. Journal of Clinical Microbiology, 37(6), 1846–1851.  https://doi.org/10.1080/13693780310001600435.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Van Poucke, K., Franceschini, S., Webber, J. F., Vercauteren, A., Turner, J. A., McCracken, A. R., Heungens, K., & Brasier, C. M. (2012). Discovery of a fourth evolutionary lineage of Phytophthora ramorum: EU2. Fungal Biology, 116(11), 1178–1191.  https://doi.org/10.1016/j.funbio.2012.09.003.CrossRefPubMedGoogle Scholar
  42. Whelan, J. A., Russell, N. B., & Whelan, M. A. (2003). A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods, 278(1–2), 261–969.CrossRefGoogle Scholar
  43. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phyologenetics. In PCR Protocols: A Guide to Methods and Applications (pp. 315–322).Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Sanne Torfs
    • 1
    • 2
  • Kris Van Poucke
    • 1
  • Jelle Van Campenhout
    • 3
  • An Ceustermans
    • 3
  • Sarah Croes
    • 3
  • Dany Bylemans
    • 2
    • 3
  • Wendy Van Hemelrijck
    • 3
  • Wannes Keulemans
    • 2
  • Kurt Heungens
    • 1
    Email author
  1. 1.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO)MerelbekeBelgium
  2. 2.Department of BiosystemsKU LeuvenHeverleeBelgium
  3. 3.Research Station for Fruit (pcfruit)Sint-TruidenBelgium

Personalised recommendations