Advertisement

Characterization of fungal species associated with cladode brown spot on Nopalea cochenillifera in Brazil

  • Cinthia ConfortoEmail author
  • Nelson Bernardi Lima
  • Fabio Junior Araújo Silva
  • Marcos Paz Saraiva Câmara
  • Sajeewa Maharachchikumbura
  • Sami Jorge Michereff
Article
  • 41 Downloads

Abstract

Cladode brown spot (CBS) is an important disease of Nopalea cochenillifera in the semiarid region of Northeastern Brazil. It has been reported in several countries, but its etiology is controversial, attributed to a complex of pathogens. Fifty fungal isolates were obtained and identified based on morphology and phylogeny, through analysis of the ribosomal DNA internal transcribed spacers (ITS), translation elongation factor 1-alpha (TEF1-alpha), β-tubulin (TUB-2), second largest subunit of RNA polymerase (RPB2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the mating type locus MAT1–2 (ApMAT) partial gene sequences. Seven fungal general and twenty species were identified – Alternaria sp., A. longipes and A. tenuissima; Colletotrichum fructicola and C. siamense; Fusarium lunatum, F. incarnatum, and F. verticillioides; Lasiodiplodia euphorbicola, L. iraniensis, L. pseutheobromae, L. theobromae and Lasiodiplodia sp.; Neofusicoccum batangarum; Neopestalotiopsis australis, N. protearum and Neopestalotiopsis sp.; and Nigrospora sphaerica, N. hainanensis and Nigrospora sp. Four of these species had already been reported on Cactaceae of the genus Opuntia, but only N. batangarum, C. fructicola and C. siamense have been reported to date on the genus Nopalea. All isolates were pathogenic to detached cladodes of N. cochenillifera ‘Miúda’. Differences in aggressiveness were observed among the species, with L. iraniensis and F. lunatum characterized as the most aggressive species, whilst F. verticillioides as the least aggressive. This study provide important information on the fungi associated with cladode brown spot and improve the strategies for the management of disease on N. cochenillifera.

Keywords

Cladode disease Prickly pear cactus Etiology Fungal pathogen Multilocus analysis 

Notes

Acknowledgments

This study was financed by Instituto Nacional de Tecnología Agropecuária (INTA, Argentina) and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasil). The first author was partially supported by a doctor scholarship of the INTA. M. P. S. Câmara and S. J. Michereff also acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasil) research fellowship.

Compliance with ethical standards

Conflict of interest

The authors do not have any conflict of interest.

Informed consent

All authors have reviewed the manuscript and approved its submission to European Journal of Plant Pathology.

Supplementary material

10658_2019_1847_MOESM1_ESM.docx (107 kb)
ESM 1 (DOCX 107 kb)

References

  1. Alves, A., Crous, P. W., Correia, A., & Phillips, A. J. L. (2008). Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity, 28, 1–13.Google Scholar
  2. Ammar, M. I., Shltout, A. B., & Kamhawy, M. A. (2004). Cladode and fruit rots of prickly pear (Opuntia ficus-indica L. Mill.) in Egypt. Egyptian Journal of Phytopathology, 32, 119–128.Google Scholar
  3. Barbosa, R. S., Cavalganti, V. A. L., Lopes, E. B., & Araujo, E. (2007) Doenças da Palma in E. B. Lopes (Ed.), Palma forrageira: cultivo, uso atual e perspectivas de utilização no semiárido nordestino (pp. 47–56). João Pessoa, Brazil: EMEPA/FAEPA.Google Scholar
  4. Barbosa, R. S., Calvalcanti, V. A. L., Lopes, E. B, & Araújo, E. (2012). Doenças da Palma forrageira. In E. B. Lopes (Ed.), Palma forrageira: Cultivo, uso atual e perspectivas de utilização no semiárido nordestino (pp. 81–98). João Pessoa: EMEPA/FAEPA.Google Scholar
  5. Barnet, H. B., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed.). St. Paul: APS Press.Google Scholar
  6. Begoude, B. A. D., Slippers, B., Wingfield, M. J., & Roux, J. (2010). Botryosphaeriaceae associated with Terminalia catappa in Cameroon, South Africa and Madagascar. Mycological Progress, 9, 101–123.CrossRefGoogle Scholar
  7. Berbee, M. L., Pirseyedi, M., & Hubbard, S. (1999). Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 91, 964–977.CrossRefGoogle Scholar
  8. Bezerra, J. D., Santos, M. G., Svedese, V. M., Lima, D. M., Fernandes, M. J., Paiva, L. M., & Souza-Motta, C. M. (2012). Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World Journal of Microbiology and Biotechnology, 28, 1989–1995.CrossRefGoogle Scholar
  9. Bragança, C. A. D., Silva, L. L., Haddad, F., & Oliveira, S. A. S. (2016). First report of Colletotrichum fructicola causing anthracnose in cassava (Manihot esculenta) in Brazil. Plant Disease, 100, 857–858.CrossRefGoogle Scholar
  10. Capobiango, N. P., Pinho, D. B., Zambolim, L., Pereira, O. L., & Lopes, U. P. (2016). Anthracnose on strawberry fruits caused by Colletotrichum siamense in Brazil. Plant Disease, 100, 859.CrossRefGoogle Scholar
  11. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.CrossRefGoogle Scholar
  12. Conforto, C., Lima, N. B., Garcete-Gómez, J. M., Câmara, M. P. S., & Michereff, S. J. (2016). First report of cladode brown spot in cactus prickly pear caused by Neofusicoccum batangarum in Brazil. Plant Disease, 100, 1238.CrossRefGoogle Scholar
  13. Conforto, C., Lima, N. B., Garcete-Gómez, J. M., Câmara, M. P. S., & Michereff, S. J. (2017). First report of Colletotrichum siamense and C. fructicola causing cladode brown spot in Nopalea cochenillifera in Brazil. Journal of Plant Pathology, 99, 812.Google Scholar
  14. Correia, K. C., Silva, M. A., Morais, M. A., Jr., Armengol, J., Phillips, A. J. L., Câmara, M. P. S., & Michereff, S. J. (2016). Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with dieback of table grape in the main Brazilian exporting region. Plant Pathology, 65, 92–103.CrossRefGoogle Scholar
  15. Costa, J. F. O., Ramos-Sobrinho, R., Chaves, T. P., Silva, J. R. A., Pinho, D. B., Assunção, I. P., & Lima, G. S. A. (2017). First report of Colletotrichum fructicola causing anthracnose on Annona leaves in Brazil. Plant Disease, 101, 386–387.CrossRefGoogle Scholar
  16. Dodge, B. O. (1938). A further study of the dry-rot disease of Opuntia. Mycologia, 30, 82–96.CrossRefGoogle Scholar
  17. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.Google Scholar
  18. Farr, D. F., & Rossman, A. Y. (2019). Fungal database: Fungus-host distributions. http://nt.ars-grin.gov/fungaldatabases/fungushost/fungushost.cfm. Accessed 23 Mar 2019.
  19. Ferreira, M. A., Bispo, S. V., Rocha Filho, R. R., Urbano, S. A., & Costa, C. T. F. (2012). The use of cactus as forage for dairy cows in semi-arid regions of Brazil. In P. Konvalina (Ed.), Organic farming and food production (pp. 169–189). Rijeka: InTech.Google Scholar
  20. Fisher, P. J., Sutton, B. C., Petrini, L. E., & Petrini, O. (1994). Fungal endophytes from Opuntia stricta: a first report. Nova Hedwigia, 59, 195–200.Google Scholar
  21. Flores-Flores, R., Velázquez del Valle, M. G., León-Rodriguez, R., Flores-Moctezuma, H. E., & Hernández-Lauzardo, A. N. (2013). Identification of fungal species associated with cladode spot of prickly pear and their sensitivity to chitosan. Journal of Phytopathology, 161, 544–552.CrossRefGoogle Scholar
  22. Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplifyconserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Google Scholar
  23. Goh, T. K. (1999). Single-spore isolation using a handmade glass needle. Fungal Diversity, 2, 47–63.Google Scholar
  24. Granata, G. (2001). Doenças bióticas e abióticas. In G. Barbera, P. Inglese, & E. Pimienta-Barrios (Eds.), Agroecologia, cultivo e usos da palma forrageira (pp. 112–122). Rome: FAO/Sebrae.Google Scholar
  25. Hyde, K. D., Nilsson, R. H., Alias, S. A., Ariyawansa, H. A., Blair, J. E., Cai, L., De Cock, A. W. A. M., Dissanayake, A. J., Glockling, S. L., Goonasekara, I. D., Gorczak, M., Hahn, M., Jayawardena, R. S., Al Van Kan, J. A. L., Laurence, M. H., Lévesque, C. A., Li, X., Liu, J. K., Maharachchikumbura, S. S. N., Manamgoda, D. S., Martin, F. N., Mckenzie, E. H. C., Mctaggart, A. R., Mortimer, P. E., Nair, P. V. R., Pawłowska, J., Rintoul, T. L., Shivas, R. G., Spies, C. F. J., Summerell, B. A., Taylor, P. W. J., Terhem, R. B., Udayanga, D., Vaghefi, N., Walther, G., Wilk, M., Wrzosek, M., Xu, J.-C., Yan, J.-Y., & Zhou, N. (2014). One stop shop: backbones trees for important pytopathogenic genera: I. Fungal Diversity, 67, 21–125.CrossRefGoogle Scholar
  26. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.CrossRefGoogle Scholar
  27. Lima, G. S. A., Assunção, I. P., Martins, R. B., Santos, H. V., & Michereff, S. J. (2011). Development and validation of a standard area diagram set for assessment of Alternaria spot on the cladodes of the prickly pear cactus. Journal of Plant Pathology, 93, 691–695.Google Scholar
  28. Lima, N. B., Batista, M. V. D. A., Morais, M. A., Jr., Barbosa, M. A. G., Michereff, S. J., Hyde, K. D., & Câmara, M. P. S. (2013). Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Diversity, 61, 75–88.CrossRefGoogle Scholar
  29. Liu, Y. J., Whelen, S., & Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Molecular Biology and Evolution, 16, 1799–1808.CrossRefGoogle Scholar
  30. Lopes, E. B., Santos, D. C. E., & Vasconcelos, M. F. (2012). Cultivo da palma forrageira. In E. B. Lopes (Ed.), Palma forrageira: Cultivo, uso atual e perspectivas de utilização no semiárido nordestino (pp. 21–60). João Pessoa: EMEPA/FAEPA.Google Scholar
  31. Maharachchikumbura, S. S. N., Guo, L. D., Cai, L., Chukeatirote, E., Wu, W. P., Sun, X., Crous, P. W., Bhat, D. J., McKenzie, E. H. C., Bahkali, A. H., & Hyde, K. D. (2012). A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Diversity, 56, 95–129.CrossRefGoogle Scholar
  32. Maharachchikumbura, S. S. N., Hyde, K. D., Groenewald, J. Z., Xu, J., & Crous, P. W. (2014). Pestalotiopsis revisited. Studies in Mycology, 79, 121–186.CrossRefGoogle Scholar
  33. Marques, W. M., Lima, N. B., Morais, M. A., Jr., Barbosa, M. A. G., Souza, B. O., Michereff, S. J., Phillips, A. J. L., & Câmara, M. P. S. (2013a). Species of Lasiodiplodia associated with mango in Brazil. Fungal Diversity, 61, 181–193.CrossRefGoogle Scholar
  34. Marques, W. M., Lima, N. B., Morais, M. A., Jr., Michereff, S. J., Phillips, A. J. L., & Câmara, M. P. S. (2013b). Botryosphaeria, Neofusicoccum, Neoscytalidium and Pseudofusicoccum species associated with mango in Brazil. Fungal Diversity, 61, 195–208.CrossRefGoogle Scholar
  35. Netto, M. S. B., Assunção, I. P., Lima, G. S. A., Marques, M. W., Lima, W. G., Monteiro, J. H. A., Balbino, V. Q., Michereff, S. J., Phillips, A. J. L., & Câmara, M. P. S. (2014). Species of Lasiodiplodia associated with papaya stem-end rot in Brazil. Fungal Diversity, 67, 127–141.CrossRefGoogle Scholar
  36. Netto, M. S. B., Lima, W. G., Correia, K. C., da Silva, C. F. B., Thon, M., Martins, R. B., Miller, R. N. G., Michereff, S. J., & Câmara, M. P. S. (2017). Analysis of phylogeny, distribution, and pathogenicity of Botryosphaeriaceae species associated with gummosis of Anacardium in Brazil, with a new species of Lasiodiplodia. Fungal Biology, 121, 437–451.CrossRefGoogle Scholar
  37. Nuno Silva, D., Talhinhas, P., Varzea, V. M. P., Cai, L., Salgueiro Paulo, O., & Batista, D. (2012). Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts. Mycologia, 104, 396–409.CrossRefGoogle Scholar
  38. Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Uppsala: Uppsala University, Evolutionary Biology Centre.Google Scholar
  39. Page, R. D. M. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.Google Scholar
  40. Rehner, S. A. (2001). Primers for elongation factor 1-alpha (EF1-alpha). http://www.aftol.org/pdfs/EF1primer.pdf. Accessed 15 Feb 2015.
  41. Rojas, E. I., Rehner, S. A., Samuels, G. J., Van Bael, S. A., Herre, E. A., Cannon, P., Chen, R., Pang, J., Wang, R., Zhang, I., Peng, I. Q., & Sha, T. (2010). Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish host associated pathogens from asymptomatic endophytes. Mycologia, 102, 1318–1338.CrossRefGoogle Scholar
  42. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.CrossRefGoogle Scholar
  43. Sharma, G., Pinnaka, A. K., & Shenoy, N. D. (2014). Resolving the Colletotrichum siamense species complex using ApMat marker. Fungal Diversity, 71, 247–264.CrossRefGoogle Scholar
  44. Silva-Hughes, A. F., Wedge, D. E., Cantrell, C. L., Carvalho, C. R., Pan, Z., Moraes, R. M., Madoxx, V. L., & Rosa, L. H. (2015). Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiological Research, 175, 67–77.CrossRefGoogle Scholar
  45. Souza, A. E. F., Nascimento, L. C., Araújo, E., Lopes, E. B., & Souto, F. M. (2010). Ocorrência e identificação dos agentes etiológicos de doenças em palma forrageira (Opuntiaficus-indica Mill.) no semiárido paraibano. Biotemas, 23, 11–20.Google Scholar
  46. Staden, R., Beal, K. F., & Bonfield, J. K. (1998). The Staden package, 1998. In S. Misener & A. S. Krawetz (Eds.), Bioinformatics methods and protocols (pp. 115–130). New York: Academic Press.Google Scholar
  47. Sung, G. H., Sung, J. M., Hywel-Jones, N. L., & Spatafora, J. W. (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, 44, 1204–1223.CrossRefGoogle Scholar
  48. Suryanarayanan, T., Wittlinger, S. K., & Faeth, S. H. (2005). Endophytic fungi associated with cactiin Arizona. Mycological Research, 109, 635–639.CrossRefGoogle Scholar
  49. Swart, W. J., & Kriel, W. M. (2002). Pathogens associated with necrosis of cactus pear cladodes in South Africa. Plant Disease, 86, 693.CrossRefGoogle Scholar
  50. Tuite, J. (1969). Plant pathological methods - Fungi and bacteria. Minneapolis: Burgess Publishing.Google Scholar
  51. Wang, M., Liu, F., Crous, P. W., & Cai, L. (2017). Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia, 39, 118–142.CrossRefGoogle Scholar
  52. Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180.CrossRefGoogle Scholar
  53. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic Press.Google Scholar
  54. Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., & Crous, P. W. (2013). Alternaria redefined. Studies in Mycology, 75, 171–212.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Cinthia Conforto
    • 1
    • 2
    Email author
  • Nelson Bernardi Lima
    • 1
    • 2
  • Fabio Junior Araújo Silva
    • 3
  • Marcos Paz Saraiva Câmara
    • 3
  • Sajeewa Maharachchikumbura
    • 4
  • Sami Jorge Michereff
    • 5
  1. 1.Instituto Nacional de Tecnología Agropecuaria, Instituto de Patología Vegetal (Argentina)CIAP-INTACórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización AgrícolaCONICET-UFYMACórdobaArgentina
  3. 3.Departamento de AgronomiaUniversidade Federal Rural de PernambucoRecifeBrazil
  4. 4.Department of Crop Sciences, College of Agriculturaland Marine SciencesSultan Qaboos UniversityAl-Khod 123Oman
  5. 5.Centro de Ciências Agrárias e da BiodiversidadeUniversidade Federal do CaririCratoBrazil

Personalised recommendations