Advertisement

Development of recombinase polymerase amplification assay for rapid detection of Meloidogyne incognita, M. javanica, M. arenaria, and M. enterolobii

  • Yuliang Ju
  • Yu Lin
  • Guogen Yang
  • Huiping Wu
  • Yuemin PanEmail author
Article
  • 57 Downloads

Abstract

Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification approach that has been used to detect a variety of animal and plant pathogens. However, the RPA assay is rarely used for the molecular diagnosis of plant parasitic nematodes. In this study, we developed RPA assays for the detection of four Meloidogyne spp.; Meloidogyne incognita, M. javanica, M. arenaria, and M. enterolobii. The RPA amplification step could be completed at 38 °C in 20 min without a thermal cycling instrument. The RPA assays were able to distinguish these four Meloidogyne spp. from closely related Meloidogyne species and other plant parasitic nematodes. The detection limits of the RPA assays were 10−2, 10−2, 10−1, and 10−1 dilutions of DNA from a single J2 nematode of M. incognita, M. javanica, M. arenaria, and M. enterolobii, which were less sensitive than polymerase chain reaction (PCR) detection methods. In addition, the RPA assays could detect these four Meloidogyne spp. directly from infested tomato roots. The simplicity, rapidity and practicability all indicated that the RPA assay will be an effective tool for molecular diagnosis of plant parasitic nematodes.

Keywords

Recombinase polymerase amplification Meloidogyne Molecular diagnosis Specificity Sensitivity Practicability 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 18234004), the Natural Science Foundation of Anhui Province (Grant No. 1808085QC80), and the Natural Science Foundation of Anhui Provincial Department of Education (Grant No. KJ2018A0147).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the author.

Informed consent

Informed consent was not applicable to this article since no information regarding individual participants was included in the study.

References

  1. Adam, M. A. M., Phillips, M. S., & Blok, V. C. (2007). Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathology, 56, 190–197.CrossRefGoogle Scholar
  2. Berry, S. D., Fargette, M., Spaull, V. W., Morand, S., & Cadet, P. (2008). Detection and quantification of root-knot nematode (Meloidogyne javanica), lesion nematode (Pratylenchus zeae) and dagger nematode (Xiphinema elongatum) parasites of sugarcane using real-time PCR. Molecular and Cellular Probes, 22, 168–176.CrossRefGoogle Scholar
  3. Craw, P., & Balachandran, W. (2012). Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab on a Chip, 12, 2469–2486.CrossRefGoogle Scholar
  4. Elling, A. A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathology, 103, 1092–1102.CrossRefGoogle Scholar
  5. Euler, M., Wang, Y., Otto, P., Tomaso, H., Escudero, R., Anda, P., Hufert, F. T., & Weidmann, M. (2012). Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. Journal of Clinical Miceobiology, 50, 2234–2238.CrossRefGoogle Scholar
  6. Euler, M., Wang, Y., Heidenreich, D., Patel, P., Strohmeier, O., Hakenberg, S., Niedrig, M., Hufert, F. T., & Weidmann, M. (2013). Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. Journal of Clinical Microbiology, 51, 1110–1117.CrossRefGoogle Scholar
  7. Gheysen, G., & Mitchum, M. G. (2011). How nematodes manipulate plant development pathways for infection. Current Opinion in Plant Biology, 14, 415–421.CrossRefGoogle Scholar
  8. Ghosh, D. K., Kokane, S. B., Kokane, A. D., Warghane, A. J., Motghare, M. R., Bhose, S., Sharma, A. K., & Reddy, M. K. (2018). Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of "Candidatus Liberibacter asiaticus". PLoS One, 13, e0208530.CrossRefGoogle Scholar
  9. Htay, C., Peng, H., Huang, W., Kong, L., He, W., Holgado, R., & Peng, D. (2016). The development and molecular characterization of a rapid detection method for rice root-knot nematode (Meloidogyne graminicola). European Journal of Plant Pathology, 146, 281–291.CrossRefGoogle Scholar
  10. Hu, M., Zhuo, K., & Liao, J. (2011). Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii, and M. javanica using DNA extracted directly from individual galls. Phytopathology, 101, 1270–1277.CrossRefGoogle Scholar
  11. Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., & Jones, M. G. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.CrossRefGoogle Scholar
  12. Kersting, S., Rausch, V., Bier, F. F., & von Nickisch-Rosenegk, M. (2014). Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria Journal, 13, 99.CrossRefGoogle Scholar
  13. Kim, J., & Easley, C. J. (2011). Isothermal DNA amplification in bioanalysis: Strategies and applications. Bioanalysis, 3, 227–239.CrossRefGoogle Scholar
  14. Lau, H. Y., & Botella, J. R. (2017). Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Frontiers in Plant Science, 8, 2016.CrossRefGoogle Scholar
  15. Lodh, N., Naples, J. M., Bosompem, K. M., Quartey, J., & Shiff, C. J. (2014). Detection of parasite-specific DNA in urine sediment obtained by filtration differentiates between single and mixed infections of Schistosoma mansoni and S. haematobium from endemic areas in Ghana. PLoS One, 9, e91144.CrossRefGoogle Scholar
  16. Londono, M. A., Harmon, C. L., & Polston, J. E. (2016). Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virology Journal, 13, 48.CrossRefGoogle Scholar
  17. Long, H., Liu, H., & Xu, J. (2006). Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterobbii. Acta Phytopathologica Sinica, 36, 109–115.Google Scholar
  18. Meng, Q., Long, H., & Xu, J. (2004). PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria. Acta Phytopathologica Sinica, 34, 204–210.Google Scholar
  19. Moens, M., Perry, R. N., & Starr, J. L. (2009). Meloidogyne species-a diverse group of novel and important plant parasites. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 1–17). Wallingford: CAB International.Google Scholar
  20. Mondal, D., Ghosh, P., Khan, M. A. A., Hossain, F., Bohlken-Fascher, S., Matlashewski, G., et al. (2016). Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasites & Vectors, 9, 281.CrossRefGoogle Scholar
  21. Moore, M. D., & Jaykus, L. A. (2017). Recombinase polymerase amplification: A promising point-of-care detection method for enteric viruses. Future Virology, 12, 421–429.CrossRefGoogle Scholar
  22. Nicol, J. M., Turner, S. J., Coyne, D. L., den Nijs, L., Hockland, S., & Tahna Maafi, Z. (2011). Current nematode threats to world agriculture. In J. T. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). Heidelberg: Springer.CrossRefGoogle Scholar
  23. Niu, J., Guo, Q., Jian, H., Chen, C., Yang, D., Liu, Q., & Guo, Y. D. (2011). Rapid detection of Meloidogyne spp. by LAMP assay in soil and roots. Crop Protection, 30, 1063–1069.CrossRefGoogle Scholar
  24. Niu, J., Jian, H., Guo, Q., Chen, C., Wang, X., Liu, Q., et al. (2012). Evaluation of loop-mediated isothermal amplification (LAMP) assay based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology, 61, 809–819.CrossRefGoogle Scholar
  25. Peng, H., Long, H., Huang, W., Liu, J., Cui, J., Kong, L., Hu, X., Gu, J., & Peng, D. (2017). Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology. Scientific Reports, 7, 44853.CrossRefGoogle Scholar
  26. Piepenburg, O., Williams, C. H., Stemple, D. L., & Armes, N. A. (2006). DNA detection using recombination proteins. PLoS Biology, 4, 1115–1121.CrossRefGoogle Scholar
  27. Powers, T. O., & Harris, T. S. (1993). A polymerase chain reaction method for identification of five major Meloidogyne species. Journal of Nematology, 25, 1–6.Google Scholar
  28. Rahman, S. A. S. A., Mohamed, Z., Othman, R. Y., Swennen, R., Panis, B., De Waele, D., et al. (2010). In planta PCR-based detection of early infection of plant-parasitic nematodes in the roots: A step towards the understanding of infection and plant defense. European Journal of Plant Pathology, 128, 343–351.CrossRefGoogle Scholar
  29. Randig, O., Bongiovanni, M., Carneiro, R. M., & Castagnone-Serno, P. (2002). Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome, 45, 862–870.CrossRefGoogle Scholar
  30. Reid, M. S., Le, X. C., & Zhang, H. (2018). Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities. Angewandte Chemie International Edition, 57, 11856–11866.  https://doi.org/10.1002/anie.201712217.CrossRefGoogle Scholar
  31. Subbotin, S. A. (2018). Recombinase polymerase amplification assay for rapid detection of the root-knot nematode Meloidogyne enterolobii. Nematology, 21, 243–251.CrossRefGoogle Scholar
  32. Tigano, M., Siqueira, K. D., Castagnone-Sereno, P., Mulet, K., Queiroz, P., Santos, M. D., et al. (2010). Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Pathology, 59, 1054–1061.CrossRefGoogle Scholar
  33. Toyota, K., Shirakashi, T., Sato, E., Wada, S., & Min, Y. Y. (2008). Development of a real-time PCR method for the potato-cyst nematode Globodera rostochiensis and the root-knot nematode Meloidogyne incognita. Soil Science and Plant Nutrition, 54, 72–76.CrossRefGoogle Scholar
  34. Zaghloul, H., & El-Shahat, M. (2014). Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis. World Journal of Hepatology, 6, 916–922.CrossRefGoogle Scholar
  35. Zijlstra, C., Donkers-Venne, D. T. H. M., & Fargette, M. (2000). Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterized amplified region (SCAR) based PCR assays. Nematology, 2, 847–853.CrossRefGoogle Scholar
  36. Zou, Y., Mason, M. G., Wang, Y., Wee, E., Turin, C., Blackall, P. J., et al. (2018). Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biology, 16, e2003916.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Yuliang Ju
    • 1
  • Yu Lin
    • 2
  • Guogen Yang
    • 1
  • Huiping Wu
    • 1
  • Yuemin Pan
    • 1
    Email author
  1. 1.Key Laboratory of Biology and Sustainable Management of Plant Disease and Pests of Anhui Higher Education InstitutesAnhui Agricultural UniversityHefeiChina
  2. 2.Tianjin Customs District of the People’s Republic of ChinaTianjinChina

Personalised recommendations