Comparison of viral infection risk between organic and conventional crops of tomato in Spain

  • E. Lázaro
  • C. Armero
  • J. Roselló
  • J. Serra
  • M. J. Muñoz
  • R. Canet
  • L. Galipienso
  • L. RubioEmail author


The harmful effects of conventional agriculture on the environment and human health have been an increasing concern, resulting in the search for alternative and more sustainable agricultural systems in the last decades. Organic farming is the fastest growing system worldwide, but there is a controversial debate on the ability of the agroecological practices to cope with diseases and pests and produce food for the world population. However, comparative studies on the effect of organic farming on plant disease are almost non-existent particularly concerning plant virus diseases. In this work, a survey of Tomato mosaic virus (ToMV), Cucumber mosaic virus (CMV) and Tomato spotted wilt virus (TSWV) was performed in tomato crops under organic or conventional management by sampling 40 small farms in Eastern Spain. ToMV had the highest incidence whereas few plants were infected by CMV and none by TSWV. Viral infection risk was estimated as the probability of a plant being infected by at least one of the three viruses or by each virus separately according to a Bayesian logistic regression model. Our analysis showed that the infection risk by these viruses was lower in organic than in conventional farms in two non-consecutive years.


Tomato mosaic virus Cucumber mosaic virus Tomato spotted wilt virus 



E.L.H. was the recipient of a predoctoral fellowship FPU from the Spanish Ministry of Education, Culture, and Sports. We thank Dr. Isabel Font for providing ToMV- and CMV-infected plant material and Dr. José Guerri for critical suggestions.

Compliance with ethical standards

This work was funded in part by grants RTA2013–00047-C01 from INIA co-financed with FEDER funds, MTM2016–77501-P from the Spanish Ministry of Economy and Competitiveness and ACOMP/2015/202 from Generalitat Valenciana. The authors declare no conflict of interest. This article does not contain any work conducted on animal or human participants.


  1. Altieri, M. A. (1995). Agroecology: The science of sustainable agriculture (2nd ed.). Boulder, CO: Westview Press.Google Scholar
  2. Alvares, D., Armero, C., Forte, A., & Rubio, L. (2016). Exploring Bayesian models to evaluate control procedures for plant disease. Statistics and Operations Research Statistics, 40, 139–152.Google Scholar
  3. Alvares D, Armero C, Forte A, Serra J, Galipienso L, Rubio L (2017) Incidence and control of black spot syndrome of tiger nut. Annals of Applied Biology 171(3):417–423Google Scholar
  4. Alvares D, Armero C, Forte A (2018) What does objective mean in a dirichlet-multinomial process?. Int Stat Rev 86(1):106–118Google Scholar
  5. Bengtsson, J., Ahnström, J., & Weibull, A. (2005). The effects of organic agriculture on biodiversity and abundance: A meta-analysis. Journal of Applied Ecology, 42, 261–269.CrossRefGoogle Scholar
  6. Berkelmans, R., Ferris, H., Tenuta, M., & van Bruggen, A. H. C. (2003). Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Applied Soil Ecology, 23, 223–235.CrossRefGoogle Scholar
  7. Christensen, R., Johnson, W., Branscum, A., & Hanson, T. E. (2011). Bayesian ideas and data analysis: An introduction for scientists and statisticians. Boca de Raton, FL: CRC Press.Google Scholar
  8. Clark, M. F., & Adams, A. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.CrossRefGoogle Scholar
  9. Crowder, D.W., & Reganold, J.P. (2015). Financial competitiveness of organic agriculture on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 112, 7611-7616.Google Scholar
  10. Debreczeni, D., Ruiz-Ruiz, S., Aramburu, J., López, C., Belliure, B., Galipienso, L., Soler, S., & Rubio, L. (2011). Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan® MGB probes. Journal of Virological Methods, 176, 32–37.CrossRefGoogle Scholar
  11. Debreczeni, D., López, C., Aramburu, J., Daros, J. A., Soler, S., Galipienso, L., Falk, B. W., & Rubio, L. (2015). Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance breaking) from Spain. Archives of Virology, 160, 2117–2123.CrossRefGoogle Scholar
  12. Dennehy, J. J. (2017). Evolutionary ecology of virus emergence. Annals of the New York Academy of Sciences, 1389, 124–146.CrossRefGoogle Scholar
  13. Elena, S. F., Fraile, A., & García-Arenal, F. (2014). Evolution and emergence of plant viruses. Advances in Virus Research, 88, 161–191.CrossRefGoogle Scholar
  14. Entz, M., Penner, K., Vessey, J., Zelmer, C., & Thiessen-Martens, J. (2004). Mycorrhizal colonization of flax under long-term organic and conventional management. Canadian Journal of Plant Science, 84, 1097–1109.CrossRefGoogle Scholar
  15. Ferriol, I., Rangel, E., Panno, S., Davino, S., Han, C., Olmos, A., & Rubio, L. (2015). Rapid detection and discrimination of fabaviruses by flow-through hybridisation with genus- and species-specific riboprobes. Annals of Applied Biology, 167, 26–35.CrossRefGoogle Scholar
  16. Finckh, M. R., van Bruggen, A. H. C., & Tamm, L. (2015). Plant diseases and their management in organic agriculture. St. Paul, Minnesota, USA: APS Press.Google Scholar
  17. Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64, 839–863.CrossRefGoogle Scholar
  18. Garrett, K. A., Madden, L. V., Hughes, G., & Pfender, W. F. (2004). New applications of statistical tools in plant pathology. Phytopathology, 94, 999–1003.CrossRefGoogle Scholar
  19. Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian data analysis (2nd ed.). London, UK: Chapman & Hall/CRC.Google Scholar
  20. Hanssen, I. M., Lapidot, M., & Thomma, B. P. (2010). Emerging viral diseases of tomato crops. Molecular Plant-Microbe Interactions, 23, 539–548.CrossRefGoogle Scholar
  21. Held, L., & Sabanés Bové, D. (2014). Numerical Methods for Bayesian Inference. In Numerical methods for Bayesian inference (Pages 247–289. In: Applied statistical inference). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  22. Hull, R. (2009). Comparative plant virology. London: Academic press.Google Scholar
  23. Jones, R. A. (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113–130.CrossRefGoogle Scholar
  24. Lázaro, E., Armero, C., & Rubio, L. (2016). Bayesian survival analysis to model plant resistance and tolerance to virus diseases. In International Conference on Bayesian Statistics in Action (pp. 173–181). Springer, Cham.Google Scholar
  25. Lázaro, E., Armero, C., & Rubio, L. (2017). Bayesian correlated models for assessing the prevalence of viruses in organic and non-organic agroecosystems. Statistics and Operations Research Statistics, 41, 93–116.Google Scholar
  26. Levene, H. (1960). Robust tests for equality of variances. Pages 278–292. In contributions to probability and statistics. I. Olkin I, ed. Palo Alto, Stanford University Press.Google Scholar
  27. López, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2011). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virolology, 92, 210–215.CrossRefGoogle Scholar
  28. Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.CrossRefGoogle Scholar
  29. Maffei, G., Miozzi, L., Fiorilli, V., Novero, M., Lanfranco, L., & Accotto, G. P. (2014). The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza, 24, 179–186.CrossRefGoogle Scholar
  30. MAPA. (1994). Métodos oficiales de Análisis: Tomo III. In Ministerio de Agricultura. Pesca y: Alimentación, Madrid.Google Scholar
  31. Mila, A. L., & Carriquiry, A. L. (2004). Bayesian analysis in plant pathology. Phytopathology, 94, 1027–1030.CrossRefGoogle Scholar
  32. Mila, A. L., Yang, X. B., & Carriquiry, A. L. (2003). Bayesian logistic regression of soybean Sclerotinia stem rot prevalence in the US north-central region: Accounting for uncertainty in parameter estimation. Phytopathology, 93, 758–764.CrossRefGoogle Scholar
  33. Pagán, I., González-Jaral, Moreno-Letelier, A., Rodelo-Urrego, M., Fraile, A., Piñero, D., & García-Arenal, F. (2012). Effect of biodiversity changes in disease risk: Exploring disease emergence in a plant-virus system. PLoS Pathogens, 8, e1002796.Google Scholar
  34. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.CrossRefGoogle Scholar
  35. Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55, 573–582.CrossRefGoogle Scholar
  36. Pretty, J., Sutherland, W. J., Ashby, J., Auburn, J., Baulcombe, D., Bell, M., Bentley, J., Bickersteth, S., Brown, K., & Burke, J. (2010). The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability, 8, 219–236.CrossRefGoogle Scholar
  37. Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2, 1–8.Google Scholar
  38. Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 71, 319–392.Google Scholar
  39. Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A., & Bengtsson, J. (2014). Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. Journal of Applied Ecology, 51, 746–755.CrossRefGoogle Scholar
  40. Van Bruggen, A. H. (1995). Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Disease, 79, 976–984.CrossRefGoogle Scholar
  41. Van Bruggen, A. H., Gamliel, A., & Finckh, M. R. (2016). Plant disease management in organic farming systems. Pest Management Science, 72, 30–44.CrossRefGoogle Scholar
  42. Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616–617, 255–268.CrossRefGoogle Scholar
  43. Van Bruggen, A. H. C., Goss, E. M., Havelaar, A., van Diepeningen, A. D., Finckh, M. R., & Morris, J. G. (2019). One health—Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Science of the Total Environment, 664, 927–937.CrossRefGoogle Scholar
  44. Wezel, A., Casagrande, M., Celette, F., Vian, J., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34, 1–20.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Departament d’Estadística i Investigació Operativa, Facultat de MatemàtiquesUniversitat de ValènciaBurjassotSpain
  2. 2.Instituto Valenciano de Investigaciones AgrariasMoncadaSpain
  3. 3.Laboratorio de Diagnóstico Fitopatológico-VirologíaGeneralitat ValencianaSillaSpain

Personalised recommendations