Advertisement

Pseudomonas chlororaphis CP07 strain reduces disease severity caused by Phytophthora palmivora in genotypes of Theobroma cacao

  • Yulien Miguelez-Sierra
  • Yanelis Acebo-Guerrero
  • Mondher El Jaziri
  • Pierre Bertin
  • Annia Hernández-RodríguezEmail author
Article
  • 21 Downloads

Abstract

Black pod rot is the most important disease affecting Theobroma cacao in Cuba. Plant growth promoting bacteria (PGPB) are considered an alternative for controlling plant disease in the context of the integrated management. The present work was aimed to evaluate Pseudomonas chlororaphis strain CP07, isolated from T. cacao rhizosphere, as potential PGPB against P. palmivora in cacao plants cultivated under controlled conditions. Three genotypes of Cuban traditional cacao of the group Trinitario and the genotype UF 677 were used. The effect of CP07 was evaluated by using detached leaf tests and in planta assays with plants obtained in vitro from both seeds and micrografting. Inoculation of P. palmivora in control plants showed that genotypes EICB-371, EICB-384 and UF 677 were highly susceptible to the disease (71.4 to 99% disease severity) while EICB-385 was significantly less susceptible (39 to 54.5%). In EICB-371 and EICB-385 genotypes, disease symptoms were significantly reduced in presence of CP07 compared to the control plants in all assays. In contrast, for EICB-384 and UF 677 genotypes, there was not reduction of disease severity in plants pre-treated with CP07. Results show the protective effect of treating cacao plants with CP07 against P. palmivora. Plant genotype significantly influenced the protective ability of bacteria affecting the CP07-mediated disease control. Results suggest that depending on cacao genotype, CP07 has a potential for inducing plant defense against P. palmivora which can be used in the control of black pod rot.

Keywords

Pseudomonas chlororaphis Theobroma cacao Phytophthora palmivora Biocontrol 

Notes

Acknowledgments

The authors thank to the Instituto de Investigaciones Agroforestales UCTB Baracoa (IIAB) gene banks for providing the plant material. This work was supported by the Project Région Wallonne-Cuba (‘Application of Plant Growth Promoting Bacteria in the sustainable production of cacao (Theobroma cacao L.) seedlings in Cuba’) and the Project ‘Design and strengthening of an agroecological cacao production system in Cuba’ of ARES (Académie de Recherche et d’Enseignement supérieur, Belgium).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights

No human and/or animal participants were involved in this research.

Informed consent

All authors consent to this submission.

References

  1. Acebo-Guerrero, Y., Hernández-Rodríguez, A., Heydrich-Pérez, M., El Jaziri, M., & Hernández-Lauzardo, A. N. (2012). Management of black pod rot in cacao (Theobroma cacao L.): A review. Fruits, 67(1), 41–48.  https://doi.org/10.1051/fruits/2011065.CrossRefGoogle Scholar
  2. Acebo-Guerrero, Y., Hernández-Rodríguez, A., Vandeputte, O., Miguélez-Sierra, Y., Heydrich-Pérez, M., Ye, L., Cornelis, P., Bertin, P., & El Jaziri, M. (2015). Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Journal of Applied Microbiology, 19(4), 1112–1126.  https://doi.org/10.1111/jam.12910.CrossRefGoogle Scholar
  3. Agisha, V. N., Eapen, S. J., Monica, V., Sheoran, N., Munjal, V., Suseelabhai, R., & Kumar, A. (2017). Plant endophytic Pseudomonas putida BP25 induces expression of defense genes in black pepper roots: Deciphering through suppression subtractive hybridization analysis. Physiological and Molecular Plant Pathology, 100, 106–116.  https://doi.org/10.1016/j.pmpp.2017.07.006.CrossRefGoogle Scholar
  4. Akrofi, A. Y., Terlabie, J. L., Amoako-Attah, I., & Asare, E. K. (2017). Isolation and characterization of bacteria from different cacao progenies and their antagonistic activity against the black pod disease pathogen, Phytophthora palmivora. Journal of Plant Diseases and Protection, 124(2), 143–152.  https://doi.org/10.1007/s41348-017-0082-z.CrossRefGoogle Scholar
  5. Ali, S., Hameed, S., Imran, A., Iqbal, M., & Lazarovits, G. (2014). Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microbial Cell Factories, 13, 144. http://www.microbialcellfactories.com/content/13/1/144
  6. Almeida Câmara Leite, H., Barbosa Silva, A., Pinto Gomes, F., Peres Gramacho, K., Faria, J.-C., de Souza, J.-T., & Lopes Loguercio, L. (2013). Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Applied Microbiology and Biotechnology, 97, 2639–2651.  https://doi.org/10.1007/s00253-012-4574-2.CrossRefGoogle Scholar
  7. Bakker, P. A. H. M., Pieterse, C. M. J., & van Loon, L. C. (2007). Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 97, 239–243.  https://doi.org/10.1094/PHYTO-97-2-0239.CrossRefGoogle Scholar
  8. Beattie, G. (2006). A plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In S. S. Gnanamanickam (Ed.), Plant-associated Bacteria (pp. 1–56). The Netherlands: Springer.Google Scholar
  9. Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051.  https://doi.org/10.1590/S1415-47572012000600020.CrossRefGoogle Scholar
  10. Bidot Martínez, I., Riera Nelson, M., Flamand, M.-C., & Bertin, P. (2015). Genetic diversity and population structure of anciently introduced Cuban cacao Theobroma cacao plants. Genetic Resources and Crop Evolution, 62, 67–84.  https://doi.org/10.1007/s10722-014-0136-z.CrossRefGoogle Scholar
  11. Bidot Martínez, I., Valdez de la Cruz, M., Riera Nelson, M., & Bertin, P. (2017). Establishment of a Core collection of traditional Cuban Theobroma cacao plants for conservation and utilization purposes. Plant Molecular Biology Reporter, 35(1), 47–60.  https://doi.org/10.1007/s11105-016-0999-6.CrossRefGoogle Scholar
  12. Bruce, T. J. A. (2014). Variation in plant responsiveness to defense elicitors caused by genotype and environment. Frontiers in Plant Science, 5, 349.  https://doi.org/10.3389/fpls.2014.00349.CrossRefGoogle Scholar
  13. Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiological Research, 164, 493–513.  https://doi.org/10.1016/j.micres.2008.08.007.CrossRefGoogle Scholar
  14. Dalal, J., & Kulkarni, N. (2013). Antagonistic and plant growth promoting potentials of indigenous endophytic Bacteria of soybean (Glycine max (L) Merril). Current Research in Microbiology and Biotechnology, 1(2), 62–69 http://crmb.aizeonpublishers.net/content/2013/2/crmb62-69.pdf.Google Scholar
  15. Fernández Maura, Y., Lachenaud, P., Decock, C., Díaz Rodríguez, A., & Abreu Romero, N. (in press). Caracterización de Phytophthora, agente etiológico de la pudrición negra de la mazorca del cacao en Cuba y Guyana Francesa. Centro Agrícola, e-ISSN: 2072-2001.Google Scholar
  16. García-Gutiérrez, L., Romero, D., Zeriouh, H., Cazorla, F. M., Torés, J. A., de Vicente, A., & Pérez-García, A. (2012). Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant and Soil, 358, 201–212.  https://doi.org/10.1007/s11104-012-1173-z.CrossRefGoogle Scholar
  17. Hebbar, P. K. (2007). Cacao diseases: A global perspective from an industry point of view. Phytopathology, 97(12), 1658–1663. 10.1094 /PHYTO-97-12-1658.Google Scholar
  18. Hsu, C.-K., & Micallef, S. A. (2017). Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. International Journal of Food Microbiology, 259, 1–6.  https://doi.org/10.1016/j.ijfoodmicro.2017.07.012.CrossRefGoogle Scholar
  19. Hubeaux, D. (2010). Caractérisation du Phytophthora, agent de la pourriture brune de la cabosse, à Cuba (90 p). Louvain: Université catholique de Louvain.Google Scholar
  20. International Cocoa Germplasm Database (ICGD) (2015). Group Name Information. http://www.icgd.reading.ac.uk. Accessed 12 May 2015.
  21. Koranteng, S. L., & Awuah, R. T. (2011). Biological suppression of black pod lesion development on detached cocoa pods. African Journal of Agricultural Research, 6, 67–72.  https://doi.org/10.5897/AJAR10.368.Google Scholar
  22. Márquez Rivero, J. J., & Aguirre Gómez, M. B. (2008). Manual técnico de manejo agrotécnico de las plantaciones de Cacao [Technical manual for agro-technical management of cacao plantations]. Ciudad de La Habana: ACTAF.Google Scholar
  23. Márquez Rivero, J. J., Aguirre Gómez, M. B., & Menéndez Grenot, M. (2006). Manual Técnico de Propagación del Cacao [Technical manual of cacao propagation]. Ciudad de La Habana: ACTAF.Google Scholar
  24. Martínez de la Parte, E., & Pérez Vicente, L. (2015). Incidencia de enfermedades fúngicas en plantaciones de cacao de las provincias orientales de Cuba [Incidence of fungal diseases in cacao plantations in the eastern provinces of Cuba]. Revista Protección Vegetal, 30(2), 87–960 ISSN: 2224-4697.Google Scholar
  25. Meena, B. (2014). Biological control of Pest and diseases using fluorescent pseudomonads. In K. Sahayaraj (Ed.), Basic and applied aspects of biopesticides (pp. 17–29). India: Springer.  https://doi.org/10.1007/978-81-322-1877-7_2.Google Scholar
  26. Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M., & Backman, P. A. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control, 46, 46–56.  https://doi.org/10.1016/j.biocontrol.2008.01.022.CrossRefGoogle Scholar
  27. Melnick, R. L., Suárez, C., Bailey, B. A., & Backman, P. A. (2011). Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biological Control, 57, 236–245.  https://doi.org/10.1016/j.biocontrol.2011.03.005.CrossRefGoogle Scholar
  28. Miguelez-Sierra, Y., Hernández-Rodríguez, A., Acebo-Guerrero, Y., Baucher, M., & El Jaziri, M. (2017). In vitro micrografting of apical and axillary buds of cacao. Journal of Horticultural Science and Biotechnology, 92(1), 25–30.  https://doi.org/10.1080/14620316.2016.1215231.CrossRefGoogle Scholar
  29. Motamayor, J. C., Risterucci, A. M., Heath, M., & Lanaud, C. (2003). Cacao domestication II: Progenitor germplasm of the Trinitario cacao cultivar. Heredity, 9(322–330), 0018–067X/03.Google Scholar
  30. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–479.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.CrossRefGoogle Scholar
  31. Neal, A., & Ton, J. (2013). Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots. Plant Signaling & Behavior, 8(1), e22655.  https://doi.org/10.4161/psb.22655.CrossRefGoogle Scholar
  32. Nyassé, S., Cilas, C., Herail, C., & Blaha, G. (1995). Leaf inoculation as an early screening test for cocoa (Theobroma cacao L.) resistance to Phytophthora black pod disease. Crop Protection, 14, 657–663.  https://doi.org/10.1016/0261-2194(95)00054-2.CrossRefGoogle Scholar
  33. Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.  https://doi.org/10.1146/annurev-phyto-082712-102340.CrossRefGoogle Scholar
  34. Pistininzi, M., Weiss, E., Achtemeier, L., & Hong, C. (2014). Zoospore production biology of Pythiaceous plant pathogens. Journal of Phytopathology, 162, 69–80.  https://doi.org/10.1111/jph.12154.CrossRefGoogle Scholar
  35. Podile, A. R., & Kishore, G. K. (2007). Plant growth-promoting rhizobacteria. In S. S. Gnanamanickam (Ed.), Plant-associated Bacteria (pp. 195–230). The Netherlands: Springer.Google Scholar
  36. Rezuanul Islam, M., Tae Jeong, Y., Se Lee, Y., & Hyun Song, C. (2012). Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic Fungi. Mycobiology, 40(1), 59–66.  https://doi.org/10.5941/MYCO.2012.40.1.059.CrossRefGoogle Scholar
  37. Santoyo, G., Sánchez-Yañez, J. M., & de los Santos-Villalobos, S. (2019). Methods for detecting biocontrol and plant growth-promoting traits in Rhizobacteria. In D. Reinhardt & A. K. Sharma (Eds.), Methods in rhizosphere biology research, rhizosphere biology (pp. 103–149). Springer Nature Singapore Pte Ltd..  https://doi.org/10.1007/978-981-13-5767-1_8.
  38. Schmidt, R., Köberl M., Mostafa A., Ramadan E. M., Monschein M., Jensen K. B., Bauer, R., & Berg, G. (2014). Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Frontiers Microbiology, 5 (64), 1–11. 10.3389.Google Scholar
  39. Singh, U. B., Malviyaa, D., Wasiullaha, Singh, S., Pradhan, J. K., Singh, B. P., Roy, M., Imram, M., Pathak, N., Baisyal, B. M., Rai, J. P., Sarma, B. K., Singh, R. K., Sharma, P. K., Deep Kaur, S., Mannah, M. C., Sharma, S. K., & Sharma, A. K. (2016). Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa). Microbiology Research, 192, 300–312.  https://doi.org/10.1016/j.micres.2016.08.0070944-5013/.CrossRefGoogle Scholar
  40. Tahi, G. M., Kébé, B. I., N’Goran, J. A. K., Sangaré, A., Mondeil, F., et al. (2006). Expected selection efficiency for resistance to cacao pod rot (Phytophthora palmivora) comparing leaf disc inoculation with field observations. Euphytica, 149, 35–44.  https://doi.org/10.1007/s10681-005-9052-9.CrossRefGoogle Scholar
  41. Tahi, G. M., Kébé, B. I., Sangaré, A., Mondeil, F., Cilas, C., et al. (2007). Foliar resistance of cacao (Theobroma cacao) to Phytophthora palmivora as an indicator of pod resistance in the fields: The effect of light intensity and time of day of leaf collection. Plant Pathology, 56, 219–226.  https://doi.org/10.1111/j.1365-3059.2006.01547.x.CrossRefGoogle Scholar
  42. Tan, S., Dong, Y., Liao, H., Huang, J., Song, S., Xu, Y., & Shen, Q. (2013). Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Management Science, 69(11), 1245–1252.  https://doi.org/10.1002/ps.3491.Google Scholar
  43. Tarkka, M., Schrey, S., & Hampp, R. (2008). Plant associated soil micro-organisms. In C. S. Nautiyal & P. Dion (Eds.), Molecular mechanisms of plant and microbe coexistence (pp. 3–53). Berlin: Springer-Verlag.  https://doi.org/10.1007/978-3-540-75575-3.CrossRefGoogle Scholar
  44. Vanhove, W., Vanhoudt, N., & Van Damme, P. (2016). Biocontrol of vascular streak dieback (Ceratobasidium theobromae) on cacao (Theobroma cacao) through induced systemic resistance and direct antagonism. Biocontrol Science and Technology, 26(4), 492–503.  https://doi.org/10.1080/09583157.2015.1128527.CrossRefGoogle Scholar
  45. Walters, D. R., Havis, N. D., Paterson, L., Taylor, J., & Walsh, D. J. (2011). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease, 95, 595–600.  https://doi.org/10.1094/PDIS-08-10-0577.CrossRefGoogle Scholar
  46. Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64(5), 1263–1280.  https://doi.org/10.1093/jxb/ert026.CrossRefGoogle Scholar
  47. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C., & Bakker, P. A. H. M. (2012). Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. Tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology, 102, 403–412.  https://doi.org/10.1094/PHYTO-08-11-0222.CrossRefGoogle Scholar
  48. Widmer, T. L. (2009). Infective potential of sporangia and zoospores of Phytophthora ramorum. Plant Disease, 93, 30–35.  https://doi.org/10.1094/PDIS-93-1-0030.CrossRefGoogle Scholar
  49. Yang, D., Wang, B., Wang, J., Chen, Y., & Zhou, M. (2009). Activity and efficacy of Bacillus subtilisstrain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control, 51, 61–65.  https://doi.org/10.1016/j.biocontrol.2009.05.021.CrossRefGoogle Scholar
  50. Zamioudis, C., Korteland, J., Van Pelt, J. A., van Hamersveld, M., Dombrowski, N., Bai, Y., Hanson, J., Van Verk, M. C., Ling, H.-K., Schulze-Lefer, P., & Pieterse, C. M. J. (2015). Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. The Plant Journal, 84, 309–322.  https://doi.org/10.1111/tpj.12995.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Yulien Miguelez-Sierra
    • 1
    • 2
  • Yanelis Acebo-Guerrero
    • 3
    • 4
  • Mondher El Jaziri
    • 2
  • Pierre Bertin
    • 5
  • Annia Hernández-Rodríguez
    • 3
    Email author
  1. 1.Faculty of Agronomy and ForestryUniversity of GuantánamoGuantánamoCuba
  2. 2.Université Libre de Bruxelles, Laboratoire de Biotechnologie VégétaleGosseliesBelgium
  3. 3.Department of Microbiology and Virology, Faculty of BiologyUniversidad de La HabanaLa HabanaCuba
  4. 4.Department of MicrobiologyUniversity of ManitobaWinnipegCanada
  5. 5.Université catholique de Louvain, Earth and Life Institute – agronomy (ELI-A)Louvain-la-NeuveBelgium

Personalised recommendations