Advertisement

Multiple alphasatellites associated with Papaya leaf curl virus and Croton yellow mosaic betasatellite in Croton bonplandianus: first identification of Ageratum yellow vein Singapore alphasatellite in Pakistan

  • Roma Mustafa
  • Muhammad Hamza
  • Muhammad Nouman Tahir
  • Hira Kamal
  • Muhammad Zuhaib Khan
  • Atiq ur Rehman
  • Brian E. Scheffler
  • Rob W. Briddon
  • Shahid Mansoor
  • Imran AminEmail author
Article
  • 78 Downloads

Abstract

Croton bonplandianus is a common weed across Pakistan and the subcontinent. Plants showing symptoms typical of begomovirus infection, including leaf curling, vein yellowing, and vein swelling were collected and analyzed for the presence of begomoviruses and associated satellites. Cloning and sequencing of products produced by rolling circle amplification showed plants to be infected by the monopartite begomovirus Papaya leaf curl virus in association with the betasatellite Croton yellow vein mosaic betasatellite, which have previously been shown to infect C. bonplandianus. Significantly two species of alphasatellite were shown to be associated with infection of C. bonplandianus; Ageratum enation alphasatellite (AEA), a common alphasatellite across the subcontinent, and Ageratum yellow vein Singapore alphasatellite (AYVSGA). This is the first identification of AYVSGA in Pakistan, which has previously only been identified in Singapore and Oman. Though each component has been identified previously, this is the first time they have been identified in a single host. The significance of these findings is discussed.

Keywords

Croton bonplandianus Papaya leaf curl virus Ageratum yellow vein Singapore alphasatellite Ageratum enation alphasatellite Croton yellow vein mosaic betasatellite 

Notes

Acknowledgements

The study was in part supported by the “Pak-US cotton productivity enhancement program” of the International Center for Agricultural Research in the Dry Areas (ICARDA) funded by United States Department of Agriculture (USDA), Agricultural Research Service (ARS), under agreement no. 58-6402-0-178F. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the USDA or ICARDA.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights

The research did not involve any studies with human participants or animals performed by any of the authors.

References

  1. Abbas, Q., Amin, I., Mansoor, S., Shafiq, M., Wassenegger, M., & Briddon, R. W. (2017). The Rep proteins encoded by alphasatellites restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana. Virus Disease, 30, 101–105.CrossRefGoogle Scholar
  2. Amin, I., Hussain, K., Akbergenov, R., Yadav, J. S., Qazi, J., Mansoor, S., Hohn, T., Fauquet, C. M., & Briddon, R. W. (2011). Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. Molecular Plant-Microbe Interaction, 24, 973–983.CrossRefGoogle Scholar
  3. Briddon, R. W., & Stanley, J. (2006). Sub-viral agents associated with plant-infecting single-stranded DNA viruses. Virology, 344, 198–210.CrossRefGoogle Scholar
  4. Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Dhawan, P., Rishi, N., Siwatch, S. S., Abdel-Salam, A. M., & Markham, P. G. (2003). Diversity of DNA β; a satellite molecule associated with some monopartite begomoviruses. Virology, 312, 106–121.CrossRefGoogle Scholar
  5. Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Rishi, N., Siwatch, S. S., Zafar, Y., Abdel-Salam, A. M., & Markham, P. G. (2004). Diversity of DNA 1: A satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology, 324, 462–474.CrossRefGoogle Scholar
  6. Briddon, R. W., Martin, D. P., Roumagnac, P., Navas-Castillo, J., Fiallo-Olivé, E., Moriones, E., & Varsani, A. (2018). Alphasatellitidae: A new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Archives of Virology, 163, 2587–2600.CrossRefGoogle Scholar
  7. Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos-Sobrinho, R., Silva, J. C., Fiallo-Olivé, E., Briddon, R. W., Hernández-Zepeda, C., Idris, A., Malathi, V. G., Martin, D. p., Rivera-Bustamante, R., Ueda, S., & Varsani, A. (2015). Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 160, 1593–1619.CrossRefGoogle Scholar
  8. Doyle, J. (1991). DNA protocols for plants. In G. M. Hewitt, A. W. B. Johnston, & J. P. W. Young (Eds.), Molecular techniques in taxonomy (pp. 283–293). Berlin, Heidelberg: Springer Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-83962-7_18.CrossRefGoogle Scholar
  9. Fondong, V. N. (2013). Geminivirus protein structure and function. Molecular Plant Pathology, 14, 635–649.CrossRefGoogle Scholar
  10. Ghosh, T., Biswas, M., Roy, P., & Guin, C. (2018). A review on traditional and pharmacological uses of Croton bonplandianum with special reference to phytochemical aspect. European Journal of Medicinal Plants, 22, 1–10.CrossRefGoogle Scholar
  11. Hanley-Bowdoin, L., Bejarano, E. R., Robertson, D., & Mansoor, S. (2013). Geminiviruses: Masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology, 11, 777–788.CrossRefGoogle Scholar
  12. Hussain, K., Hussain, M., Mansoor, S., & Briddon, R. W. (2011). Complete nucleotide sequence of a begomovirus and associated betasatellite infecting croton (Croton bonplandianus) in Pakistan. Archives of Virology, 156, 1101–1105.CrossRefGoogle Scholar
  13. Idris, A. M., Shahid, M. S., Briddon, R. W., Khan, A. J., Zhu, J. K., & Brown, J. K. (2011). An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. Journal of General Virology, 92, 707–717.CrossRefGoogle Scholar
  14. Inoue-Nagata, A. K., Lima, M. F., & Gilbertson, R. L. (2016). A review of geminivirus diseases in vegetables and other crops in Brazil: Current status and approaches for management. Horticultura Brasileria, 34, 8–18.CrossRefGoogle Scholar
  15. Khan, A. J., Mansoor, S., & Briddon, R. W. (2014). Oman: A case for a sink of begomoviruses of geographically diverse origins. Trends in Plant Science, 19, 67–70.CrossRefGoogle Scholar
  16. Kon, T., Rojas, M. R., Abdourhamane, I. K., & Gilbertson, R. L. (2009). Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. Journal of General Virology, 90, 1001–1013.CrossRefGoogle Scholar
  17. Kumar, Y., Hallan, V., & Zaidi, A. (2011). First report of Ageratum enation virus infecting Crassocephalum crepidioides (Benth.) S. Moore and Ageratum conyzoides L. in India. Journal of General Plant Pathology, 77, 214–216.CrossRefGoogle Scholar
  18. Mansoor, S., Briddon, R., Bull, S., Bedford, I., Bashir, A., Hussain, M., Saeed, M., Zafar, Y., Malik, K., & Fauquet, C. (2003). Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA β. Archives of Virology, 148, 1969–1986.CrossRefGoogle Scholar
  19. Mar, T. B., Mendes, I. R., Lau, D., Fiallo-Olive, E., Navas-Castillo, J., Alves, M. S., & Zerbini, F. M. (2017). Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: Effects on infection and transmission by the whitefly Bemisia tabaci. Journal of General Virology, 98, 1552–1562.CrossRefGoogle Scholar
  20. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1, vevoo3.CrossRefGoogle Scholar
  21. Muhire, B. M., Varsani, A., & Martin, D. P. (2014). SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One, 9, e108277.CrossRefGoogle Scholar
  22. Prajapat, R., Marwal, A., & Gaur, R. (2014). Begomovirus associated with alternative host weeds: A critical appraisal. Archives of Phytopathology Plant Protection, 47, 157–170.CrossRefGoogle Scholar
  23. Pramesh, D., Mandal, B., Phaneendra, C., & Muniyappa, V. (2013). Host range and genetic diversity of Croton yellow vein mosaic virus, a weed-infecting monopartite begomovirus causing leaf curl disease in tomato. Archives of Virology, 158, 531–542.CrossRefGoogle Scholar
  24. Saunders, K., Bedford, I. D., & Stanley, J. (2002). Adaptation from whitefly to leafhopper transmission of an autonomously-replicating nanovirus-like DNA component associated with ageratum yellow vein disease. Journal of General Virology, 83, 909–915.CrossRefGoogle Scholar
  25. Shahid, M., Yoshida, S., Khatri-Chhetri, G., Briddon, R., & Natsuaki, K. (2013). Complete nucleotide sequence of a monopartite Begomovirus and associated satellites infecting Carica papaya in Nepal. Virus Genes, 46, 581–584.CrossRefGoogle Scholar
  26. Shahid, M., Ikegami, M., Briddon, R., & Natsuaki, K. (2015). Characterization of Tomato yellow leaf curl virus and associated alphasatellite infecting Cucurbita maxima in Japan. Journal of General Plant Pathology, 81, 92–95.CrossRefGoogle Scholar
  27. Tahir, M. N., Amin, I., Briddon, R. W., & Mansoor, S. (2011). The merging of two dynasties – Identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. PLoS One, 6, e20366.CrossRefGoogle Scholar
  28. Tahir, M. N., Mansoor, S., Briddon, R. W., & Amin, I. (2017). Begomovirus and associated satellite components infecting cluster bean (Cyamopsis tetragonoloba) in Pakistan. Journal of Phytopathology, 165, 115–122.CrossRefGoogle Scholar
  29. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  30. Xie, Y., Wu, P., Liu, P., Gong, H., & Zhou, X. (2010). Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virology Journal, 7, 178.CrossRefGoogle Scholar
  31. Zaffalon, V., Mukherjee, S. K., Reddy, V. S., Thompson, J. R., & Tepfer, M. (2012). A survey of geminiviruses and associated satellite DNAs in the cotton-growing areas of northwestern India. Archives of Virology, 157, 483–495.CrossRefGoogle Scholar
  32. Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, J., Rivera-Bustamante, R., Roumagnac, P., & Consortium, I. R. (2017). ICTV virus taxonomy profile: Geminiviridae. Journal of General Virology, 98, 131–133.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Roma Mustafa
    • 1
    • 2
  • Muhammad Hamza
    • 1
    • 2
  • Muhammad Nouman Tahir
    • 1
    • 3
  • Hira Kamal
    • 1
    • 2
  • Muhammad Zuhaib Khan
    • 1
  • Atiq ur Rehman
    • 1
  • Brian E. Scheffler
    • 4
  • Rob W. Briddon
    • 1
  • Shahid Mansoor
    • 1
  • Imran Amin
    • 1
    Email author
  1. 1.Agricultural Biotechnology DivisionNational Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
  2. 2.Pakistan Institute of Engineering and Applied Sciences (PIEAS)IslamabadPakistan
  3. 3.Department of Plant PathologyBahauddin Zakariya UniversityMultanPakistan
  4. 4.Crop Genetics Research Unit, USDAStonevilleUSA

Personalised recommendations