European Journal of Plant Pathology

, Volume 155, Issue 3, pp 983–1000 | Cite as

PGPR-induced defense responses in the soybean plant against charcoal rot disease

  • Rabia Mufti
  • Asghari BanoEmail author


This study aimed to assess the role of two Plant growth promoting rhizobacteria (PGPR), Pseudomonas stutzeri (KX574858) and Pseudomonas putida (KX574857) against charcoal rot instigated by Macrophomina phaseolina in soybean (Glycine max L.) varieties; Ajmeri and NARC grown in pots under greenhouse condition. Macrophomina inocula were added to the soil at the time of sowing. Disease incidence and severity were recorded on 90th day of sowing. Seeds were inoculated with PGPR prior to sowing. Growth parameters such as germination index, shoot height and shoot fresh weight were measured at flowering stage. P. stutzeri significantly (p < 0.05) increased germination index (147% and 115%), shoot height (117% and 103%) and shoot fresh weight (120% and 100%) in cv. Ajmeri and cv. NARC, respectively, in infected plants. Both P. stutzeri (76% and 60%) and P. putida (23% and 22%) significantly decreased the disease severity index of charcoal rot in cv. Ajmeri and cv. NARC, respectively. P. stutzeri induced polyphenol oxidase (435% and 386%), phenylalanine ammonia-lyase (257% and 180%), superoxide dismutase (290% and 240%), peroxidase (733% and 666%) and catalase activities (1867% and 1424%) were linearly increased in cv. Ajmeri and cv. NARC, respectively, after 90 days of infection. Significantly higher accumulation of leaf proline and soluble proteins was recorded in both varieties due to P. stutzeri under infected condition. PGPR enhanced the availability of macronutrients in the rhizosphere of infested soil. The antioxidant and defense enzymes in plant were significantly correlated with disease suppression. The PGPR can be used as a supplement with fungicides to combat adverse effect of disease.


Antioxidant enzymes Biocontrol Glycine max Macrophomina phaseolina Pseudomonas putida Pseudomonas stutzeri 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and animal studies

This research did not involve human participants or any animal experimentation.


  1. Aebi, H. (1984). Catalase in vitro. Methods in Enzymolgy, 105, 121–126.CrossRefGoogle Scholar
  2. Akladious, S. A., & Abbas, S. M. (2014). Application of Trichoderma harzianum T22 as a biofertilizer potential in maize growth. Journal of Plant Nutrition, 37(1), 30–49.CrossRefGoogle Scholar
  3. Altinok, H. H., Dikilitas, M., & Yildiz, H. N. (2013). Potential of pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnology and Biotechnological Equipment, 27(4), 3952–3958.CrossRefGoogle Scholar
  4. Arias, S. G., Pons, R. R., Stowasser, V., & Sanfuentes, E. (2013). Temporal analysis of charcoal root rot in forest nurseries under different pathogen inoculum densities and soil moisture content. Tropical Plant Pathology, 38(3), 179–187.CrossRefGoogle Scholar
  5. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207.CrossRefGoogle Scholar
  6. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–278.PubMedCrossRefGoogle Scholar
  7. Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chiang, K. S., Liu, H. I., & Bock, C. H. (2017). A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximise accuracy. Annals of Applied Biology, 171(2), 139–154.CrossRefGoogle Scholar
  9. Corwin, D. L., & Yemoto, K. (2017). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis, (msaonline2017). Scholar
  10. Cotxarrera, L., Trillas-Gay, M. I., Steinberg, C., & Alabouvette, C. (2002). Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry, 34(4), 467–476.CrossRefGoogle Scholar
  11. Doubledee, M. D., Rupe, J. C., Rothrock, C. S., & Bajwa, S. G. (2018). Effect of root infection by Macrophomina phaseolina on stomatal conductance, canopy temperature and yield of soybean. Canadian Journal of Plant Pathology, 40(2), 272–283.CrossRefGoogle Scholar
  12. Ganeshamoorthi, P., Anand, T., Prakasam, V., Bharani, M., Ragupathi, N., & Samiyappan, R. (2008). Plant growth promoting rhizobacterial (PGPR) bioconsortia mediates induction of defense-related proteins against infection of root rot pathogen in mulberry plants. Journal of Plant Interactions, 3(4), 233–244.CrossRefGoogle Scholar
  13. Godbold, D. L., & Huttermann, A. (1988). Inhibition of photosynthesis and transpiration in relation to mercury-induced root damage in spruce seedlings. Physiologia Plantarum, 74(2), 270–275.CrossRefGoogle Scholar
  14. Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140.PubMedCrossRefGoogle Scholar
  15. Groth, J. V., Ozmon, E. A., & Busch, R. H. (1999). Repeatability and relationship of incidence and severity measures of scab of wheat caused by Fusarium graminearum in inoculated nurseries. Plant Disease, 83, 1033–1038.PubMedCrossRefGoogle Scholar
  16. Gupta, G. K., Sharma, S. K., & Ramteke, R. (2012). Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Journal of Phytopathology, 160(4), 167–180.CrossRefGoogle Scholar
  17. Hashem, A., Abd Allah, E. F., Alqarawi, A. A., Radhakrishnan, R., & Kumar, A. (2017). Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mung bean. Journal of Plant Interactions, 12(1), 390–401.CrossRefGoogle Scholar
  18. Hernandez-Montiel, L. G., Chiquito Contreras, C. J., Murillo Amador, B., Vidal Hernandez, L., Aguilar, Q., Evanjelina, E., & Chiquito Contreras, R. G. (2017). Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. Journal of Soil Science and Plant Nutrition, 17(4), 1003–1012.CrossRefGoogle Scholar
  19. Hershman, D. E. (2011). Charcoal Rot of Soybean.
  20. Jamal, Q., Seong, L. Y., Deok, J. H., & Young, K. K. (2018). Effect of plant growth-promoting bacteria Bacillus amylliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Protection Science, 54(3), 129–137.CrossRefGoogle Scholar
  21. Jones, J. B. (2001). Laboratory guide for conducting soil tests and plant analysis. Boca Raton: CRC Press. Scholar
  22. Karthikeyan, V., Sankaralingam, A., & Nakkeeran, S. (2006). Management of groundnut root rot with biocontrol agents and organic amendments. Archives of Phytopathology and Plant Protection, 39(3), 215–223.CrossRefGoogle Scholar
  23. Khan, S. N. (2007). Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Myco-Phytopathological, 5(2), 111–118.
  24. Khan, M. A., & Ungar, I. A. (1996). Influence of salinity and temperature on the germination of Haloxylon recurvum bunge ex. boiss. Annals of Botany (Lond), 78, 547–551.CrossRefGoogle Scholar
  25. Khare, E., & Arora, N. K. (2010). Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Current Microbiology, 61(1), 64–68.PubMedCrossRefGoogle Scholar
  26. Kingston, H. M. S., Dengwei, H., Yusheng, L., & Chalk, S. (1998). Accuracy in species analysis: Speciated isotope dilution mass spectrometry (SIDMS) exemplified by the evaluation of chromium species. Spectrochimica Acta Part B: Atomic Spectroscopy, 53(2), 299–309.CrossRefGoogle Scholar
  27. Kishor, P. K., Sangam, S., Amrutha, R. N., Sri Laxmi, P., Naidu, K. R., Rao Sreenath Rao, K. R. S. S., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88(3), 424–438.Google Scholar
  28. Kunwar, I. K., Singh, T., Machado, C. C., & Sinclair, J. B. (1986). Histopathology of soybean seed and seedling infection by Macrophomina phaseolina. Phytopathology, 76(5), 532–535.
  29. Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9), 998–1011.CrossRefGoogle Scholar
  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.PubMedGoogle Scholar
  31. Markwell, J., Osterman, J. C., & Mitchell, J. L. (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46, 467–472.PubMedCrossRefGoogle Scholar
  32. Mengistu, A., Ray, J. D., Smith, J. R., & Paris, R. L. (2007). Charcoal rot disease assessment of soybean genotypes using a colony-forming unit index. Crop Science, 47(6), 2453–2461.CrossRefGoogle Scholar
  33. Mengistu, A., Yin, X., Bellaloui, N., McClure, A. M., Tyler, D. D., & Reddy, K. N. (2016). Potassium and phosphorus have no effect on severity of charcoal rot of soybean. Canadian Journal of Plant Pathology, 38(2), 174–182.CrossRefGoogle Scholar
  34. Meyer, W. A., Sinclair, J. B., & Khare, M. N. (1974). Factors affecting charcoal rot of soybean seedlings. Phytopathology, 64(6), 845–849.CrossRefGoogle Scholar
  35. Mihail, J. D., & Taylor, S. J. (1995). Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity, pycnidium production, and chlorate utilization. Canadian Journal of Botany, 73(10), 1596–1603.CrossRefGoogle Scholar
  36. Orhan, E., Esitken, A., Ercisli, S., Turan, M. & Sahin, F. (2006). Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae, 111(1), 38–43.Google Scholar
  37. Pastor, N., Masciarelli, O., Fischer, S., Luna, V., & Rovera, M. (2016). Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Current Microbiology, 73(3), 346–353.PubMedCrossRefGoogle Scholar
  38. Pham, V. T., Rediers, H., Ghequire, M. G., Nguyen, H. H., De Mot, R., Vanderleyden, J., & Spaepen, S. (2017). The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Archives of Microbiology, 199(3), 513–517.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Pine, L., Hoffman, P. S., Malcolm, G. B., Benson, R. F., & Keen, M. G. (1984). Determination of catalase, peroxidase, and superoxide dismutase within the genus legionella. Journal of Clinical Microbiology, 20(3), 421–429.PubMedPubMedCentralGoogle Scholar
  40. Rais, A., Jabeen, Z., Shair, F., Hafeez, F. Y. & Hassan, M. N. (2017). Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PloS one, 12(11).Google Scholar
  41. Rojas-Solís, D., Zetter-Salmón, E., Contreras-Perez, M., Del Carmen Rocha-Granados, M., Macías-Rodríguez, L., & Santoyo, G. (2018). Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology, 13, 46–52.CrossRefGoogle Scholar
  42. Romeiro, R. S., Lanna Filho, R., Macagnan, D., Garcia, F. A., & Silva, H. S. (2010). Evidence that the biocontrol agent Bacillus cereus synthesizes protein that can elicit increased resistance of tomato leaves to Corynespora cassiicola. Tropical Plant Pathology, 35(1), 011–015.Google Scholar
  43. Sadasivam, S. & Manickam, A. (1992). Biochemical methods for agricultural sciences. Wiley Eastern Ltd, New Delhi, p 246.
  44. Sangeetha, G., Thangavelu, R., Rani, S. U., Muthukumar, A., & Udayakumar, R. (2010). Induction of systemic resistance by mixtures of antagonist bacteria for the management of crown rot complex on banana. Acta Physiologiae Plantarum, 32(6), 1177–1187.CrossRefGoogle Scholar
  45. Scandiani, M. M., Luque, A. G., Razori, M. V., Ciancio Casalini, L., Aoki, T., O donnell, K., Cervigni, G. D., & Spampinato, C. P. (2014). Metabolic profiles of soybean roots during early stages of Fusarium tucumaniae infection. Journal of Experimental Botany, 66(1), 391–402.PubMedCrossRefGoogle Scholar
  46. Singh, K. (2011). Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. European Journal of Soil Biology, 47(5), 288–295.CrossRefGoogle Scholar
  47. Singh, R. J., Nelson, R. L., & Chung, G. H. (2007). Soybean (Glycine max (L.) Merr.). Genetic resources, chromosome engineering, and crop improvement. Oilseed Crops, 4, 13–50.Google Scholar
  48. Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140(3–4), 339–353.CrossRefGoogle Scholar
  49. Singh, A., Sarma, B. K., Upadhyay, R. S., & Singh, H. B. (2013). Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiological Research, 168(1), 33–40.PubMedCrossRefGoogle Scholar
  50. Siranidou, E., Kang, Z., & Buchenauer, H. (2002). Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight. Journal of Phytopathology, 150(4–5), 200–208.CrossRefGoogle Scholar
  51. Souza, T. P., Dias, R. O., & Silva-Filho, M. C. (2017). Defense-related proteins involved in sugarcane responses to biotic stress. Genetics and Molecular Biology, 40(1), 360–372.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Staple, W. J., & Lehane, J. J. (1962). Variability in soil moisture sampling. Canadian Journal of Soil Science, 42(1), 157–164.CrossRefGoogle Scholar
  53. Sutter, V. L., Barry, A. L., Wilkins, T. D., & Zabransky, R. J. (1979). Collaborative evaluation of a proposed reference dilution method of susceptibility testing of anaerobic bacteria. Antimicrobial Agents and Chemotherapy, 16(4), 495–502.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Thompson, D. C., Clarke, B. B., & Kobayashi, D. Y. (1996). Evaluation of bacterial antagonists for reduction of summer patch symptoms in Kentucky bluegrass. Plant Disease, 80(8), 856–862.CrossRefGoogle Scholar
  55. Van Assche, F., Cardinaels, C., & Clijisters, H. (1988). Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L. treated with zinc and cadmium. Environmental Pollution, 52, 103–115.PubMedCrossRefGoogle Scholar
  56. Vidhyasekaran, P., & Muthamilan, M. (1995). Development of formulation of Pseudomonas fluorescens for control of chickpea wilt. Plant Disease, 79(8), 782–786.CrossRefGoogle Scholar
  57. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.CrossRefGoogle Scholar
  58. Whetten, R. W., & Sederoff, R. R. (1992). Phenylalanine ammonia-lyase from loblolly pine. Plant Physiology, 98(1), 380–386.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Wightwick, A., Walters, R., Allinson, G., Reichman, S. & Menzies, N. (2010). Environmental risks of fungicides used in horticultural production systems. In Fungicides. InTech. Scholar
  60. Yang, G., & Huang, T. S. (1994). Human face detection in a complex background. Pattern Recognition, 27, 53–63.CrossRefGoogle Scholar
  61. Yang, X. B., & Navi, S. S. (2005). First report of charcoal rot epidemics caused by Macrophomina phaseolina in soybean in Iowa. Plant Disease, 89(5), 526–526.PubMedCrossRefGoogle Scholar
  62. Zhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49(2), 269–278.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Department of Plant Sciences, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of BiosciencesUniversity of WahWah CanttPakistan

Personalised recommendations