Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 3, pp 891–902 | Cite as

Detection of Xanthomonas campestris pv. campestris through a real-time PCR assay targeting the Zur gene and comparison with detection targeting the hrpF gene

  • Aleš EichmeierEmail author
  • Eliška Peňázová
  • Robert Pokluda
  • Joana G. Vicente
Article
  • 186 Downloads

Abstract

Xanthomonas campestris pv. campestris (Xcc) is a seedborne bacterium that causes black rot of crucifers. A real-time PCR assay based on a dual-labeled hydrolysis TaqMan® probe has been developed for the rapid and sensitive detection of Xcc and related pathovars that affect mainly Brassicaceae crops and ornamentals. Primers were designed to specifically amplify a 152 bp fragment of the Zur gene from X. campestris. To confirm the specificity of the detection, primers targeting the Zur and hrpF genes were used for standard and real-time PCR with DNA samples from 13 Xcc strains, seven Xanthomonas species and pathovars and five different bacterial endophytes including Bacillus, Erwinia, Klebsiella, Pantoea and Pseudomonas, previously isolated from tissues of crucifers. PCR products amplified with Zur and hrpF primers were sequenced to assess the genetic diversity of these genes in the tested isolates. The real-time PCR protocol was optimized to allow the detection at the level of ten copies of Zur PCR fragment per one microliter of DNA. Although the real-time based on detection of Zur also detected X. campestris pvs raphani, armoraciae, incanae and a strain of X. hortorum pv. carotae, it improved the specificity in relation to the previously published hrpF based real-time method. A multiplex assay for Zur and hrpF genes further improved the specificity by excluding X. hortorum pv. carotae. Tests of brassica tissues and seeds artificially inoculated with Xcc showed that the real-time PCR based on detection of Zur is an efficient and robust assay.

Keywords

Real-time PCR TaqMan® probe Crucifers Sequencing Zur hrpF 

Notes

Acknowledgements

The work was supported by the project EFRR “Multidisciplinary research to increase application potential of nanomaterials in agricultural practice” (No. CZ.02.1.01/0.0/0.0/16_025/0007314). This research was also supported by Ministry of Agriculture of the Czech Republic, project no. QJ1510088 under the project COST EuroXanth Action CA16107 and the project no. TJ01000274.

Supplementary material

10658_2019_1820_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)
10658_2019_1820_MOESM2_ESM.pdf (21 kb)
ESM 2 (PDF 21 kb)

References

  1. Ahmad, A., & Ghasemi, J. (2007). New buffers to improve the quantitative real-time polymerase chain reaction. Bioscience, Biotechnology, and Biochemistry, 71, 1970–1978.  https://doi.org/10.1271/bbb.70164.CrossRefPubMedGoogle Scholar
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez, A. M., Benedict, A. A., Mizumoto, C. Y., Hunter, J. E., & Gabriel, D. W. (1994). Serological, pathological, and genetic diversity among strains of Xanthomonas campestris infecting crucifers. Phytopathology, 84, 1449.  https://doi.org/10.1094/Phyto-84-1449.CrossRefGoogle Scholar
  4. Applied Biosystems (2005) Real-time PCR systems. Applied Biosystems 7900HT fast real-time PCR system and 7300/7500 real-time PCR systems. Chemistry Guide. http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_041440.pdf. Accessed 7/9/2018
  5. Assis, S. M. P., Mariano, R. L. R., Michereff, S. J., Silva, G., & Maranhao, E. A. A. (1999). Antagonism of yeasts to Xanthomonas campestris pv. campestris on cabbage phylloplane in field. Revista de Microbiologia, 30, 191–195.  https://doi.org/10.1590/S0001-37141999000300002.CrossRefGoogle Scholar
  6. Berg, T., Tesoriero, L., & Hailstones, D. L. (2005). PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathology, 54, 416–427.  https://doi.org/10.1111/j.1365-3059.2005.01186.x.CrossRefGoogle Scholar
  7. Berg, T., Tesoriero, L., & Hailstones, D. L. (2006). A multiplex real-time PCR assay for detection of Xanthomonas campestris from brassicas. Letters in Applied Microbiology, 0, 060423083226002.  https://doi.org/10.1111/j.1472-765X.2006.01887.x.CrossRefGoogle Scholar
  8. Bio-Rad Laboratories (2006) Real-Time PCR applications guide. http://www.gene-quantification.de/real-time-pcr-guide-bio-rad.pdf. Accessed 7/9/2018
  9. Cook, A. A., Walker, J. C., & Larson, R. H. (1952). Studies on the disease cycle of black rot of crucifers. Phytopathology, 42, 162–167.Google Scholar
  10. da Silva, A. C., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F., & Alves, L. M. (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459–463.  https://doi.org/10.1038/417459a.CrossRefPubMedGoogle Scholar
  11. Debode, F., Marien, A., Janssen, E., Bragard, C., & Berben, G. (2017). The influence of amplicon length on real-time PCR results. Biotechnology, Agronomy, Society and Environment, 21, 3–11.Google Scholar
  12. Devulder, G., Pérouse de Montclos, M., & Flandrois, J. P. (2005). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. International Journal of Systematic and Evolutionary Microbiology, 55, 293–302.  https://doi.org/10.1099/ijs.0.63222-0.CrossRefPubMedGoogle Scholar
  13. Drancourt, M., & Raoult, D. (2005). Sequence-based identification of new bacteria: a proposition for creation of an orphan bacterium repository. Journal of Clinical Microbiology, 43, 4311–4315.  https://doi.org/10.1128/JCM.43.9.4311-4315.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eichmeier, A., Baránek, M., & Pidra, M. (2010). Analysis of genetic diversity and phylogeny of partial coat protein domain in Czech and Italian GFLV isolates. Plant Protection Science, 46, 145–148.  https://doi.org/10.17221/10/2010-PPS.CrossRefGoogle Scholar
  15. Eichmeier, A., Čechová, J., & Peňázová, E. (2015). Genetic diversity of partial hrpF and Zur genes in populations of Xanthomonas campestris pv. campestris in Brassica oleracea convar. capitata in the Czech Republic. Acta Horticulturae, 180–188.  https://doi.org/10.17660/ActaHortic.2015.1105.26.
  16. Eichmeier, A., Peňázová, E., Pečenka, J., Čechová, J., Pokluda, R., Tekielska, D., & Baránek, M. (2017a). Monitoring the occurrence of bacteria in stored cabbage heads. Journal of Plant Protection Research, 57, 56–61.  https://doi.org/10.1515/jppr-2017-0008.CrossRefGoogle Scholar
  17. Eichmeier, A., Peňázová, E., Baránek, M. (2017b) Metodika detekce a kvantifikace bakterie Xanthomonas campestris pv. campestris pomocí TaqMan® Real Time PCR systému: certifikovaná metodika. Brno: Mendelova univerzita v Brně. ISBN 978-80-7509-517-6.Google Scholar
  18. Fargier, E., & Manceau, C. (2007). Pathogenicity assays restrict the Xanthomonas campestris species into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathology, 56, 805–818.  https://doi.org/10.1111/j.1365-3059.2007.01648.x.CrossRefGoogle Scholar
  19. Huang, D. L., Tang, D. J., Liao, Q., Li, X. Q., He, Y. Q., Feng, J. X., Tang, J. L., et al. (2009). The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Molecular Plant-Microbe Interactions, 22, 321–329.  https://doi.org/10.1094/MPMI-22-3-0321.CrossRefPubMedGoogle Scholar
  20. Illumina (2011) Eco™ real-time PCR system user guide. Available at: https://www.illumina.com/documents/documentation/user_guide/Eco_System_User_Guide_15017157_E.pdf. Accessed 8/9/2018
  21. Khodakaramian, G., & Swings, J. (2002). AFLP fingerprinting of the strains of Xanthomonas axonopodis inducing citrus canker disease in southern Iran. Journal of Phytopathology, 150, 227–231.  https://doi.org/10.1046/j.1439-0434.2002.00746.x.CrossRefGoogle Scholar
  22. Palacio-Bielsa, A., Cubero, J., Cambra, M. A., Collados, R., Berruete, I. M., & Lopez, M. (2011). Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Applied and Environmental Microbiology, 77, 89–97.  https://doi.org/10.1128/AEM.01593-10.CrossRefPubMedGoogle Scholar
  23. Park, Y. J., Lee, B. M., Ho-Hahn, J., Lee, G. B., & Park, D. S. (2004). Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequences. Microbiological Research, 159, 419–423.  https://doi.org/10.1016/j.micres.2004.09.002.CrossRefPubMedGoogle Scholar
  24. Peňázová, E., Čechová, J., Eichmeier, A., Baránek, M., & Pokluda, R. (2015). Evaluation of different methods of DNA extraction for detection of bacterium Xanthomonas campestris pv. campestris in cabbage leaves. Acta Scientiarum Polonorum - Hortorum Cultus, 14, 141–150.Google Scholar
  25. Qian, W., Jia, Y., Ren, S. X., He, Y. Q., Feng, J. X., & Lu, L. F. (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research, 15, 757–767.  https://doi.org/10.1101/gr.3378705.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rijlaarsdam, A., Woudt, B., Simons, G., Koenraadt, H., Oosterhof, J., Asma, M., Buddiger, P., Roorda, P., Grimault, V., De Koning, J. (2004) Development of specific primer for the molecular detection of Xanthomonas campestris pv. campestris. EPPO conference on quality of diagnosis and new diagnostic methods for plant pests. Noordwijkerhout, the Netherlands, 19–22.Google Scholar
  27. Roberts, S. J., Hiltunen, L. H., Hunter, P. J., & Brough, J. (1999). Transmission from seed to seedling and secondary spread of Xanthomonas campestris pv. campestris in Brassica transplants: effects of dose and watering regime. European Journal of Plant Pathology, 105, 879–889.  https://doi.org/10.1023/A:1008790306489.CrossRefGoogle Scholar
  28. Schaad, N. W., Gabrielson, R. L., & Mulanax, M. W. (1980). Hot acidified cupric acetate soaksfor eradication of Xanthomonas campestris from crucifer seeds. Applied and Environmental Microbiology, 39, 803–807.PubMedPubMedCentralGoogle Scholar
  29. Schaad, N. W., Vidaver, A. K., Lacy, G. H., Rudolph, K., & Jones, J. B. (2000). Evaluation of proposed amended names of several pseudomonads and xanthomonads and recommendations. Phytopathology, 90, 208–213.  https://doi.org/10.1094/PHYTO.2000.90.3.208.CrossRefPubMedGoogle Scholar
  30. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kampfer, P., Maiden, M. C. J., Nesme, X., Roselló-Mora, R., Swings, J., Truper, H. G., Vauterin, L., Ward, A. C., & Whitman, W. B. (2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 52, 1043–1047.  https://doi.org/10.1099/00207713-52-3-1043.CrossRefPubMedGoogle Scholar
  31. Strayer, A. L., Jeyaprakash, A., Minsavage, G. V., Timilsina, S., Vallad, G. E., Jones, J. B., & Paret, M. L. (2016). A multiplex real-time PCR assay differentiates four Xanthomonas species associated with bacterial spot of tomato. Plant Disease, 90, 208–213.  https://doi.org/10.1094/PHYTO.2000.90.3.208.CrossRefGoogle Scholar
  32. Tang, D. J., Li, X. J., He, Y. Q., Feng, J. X., Chen, B., & Tang, J. L. (2005). The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. Molecular Plant-Microbe Interactions, 18, 652–658.  https://doi.org/10.1094/MPMI-18-0652.CrossRefPubMedGoogle Scholar
  33. Vandroemme, J., Baeyen, S., Van Vaerenbergh, J., De Vos, P., & Maes, M. (2008). Sensitive real-time PCR detection of Xanthomonas fragariae in strawberry plants. Plant Pathology, 57, 438–444.  https://doi.org/10.1111/j.1365-3059.2007.01813.x.CrossRefGoogle Scholar
  34. Vauterin, L., Rademaker, J., & Swings, J. (2000). Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology, 90, 677–682.  https://doi.org/10.1094/PHYTO.2000.90.7.677.CrossRefPubMedGoogle Scholar
  35. Vicente, J. G., & Holub, E. B. (2012). Xanthomonas campestris pv.campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Molecular Plant Pathology, 14, 2–18.  https://doi.org/10.1111/j.1364-3703.2012.00833.x.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Vicente, J. G., Conway, J., Roberts, S. J., & Taylor, J. D. (2001). Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology, 91, 492–499.  https://doi.org/10.1094/PHYTO.2001.91.5.492.CrossRefPubMedGoogle Scholar
  37. Vicente, J. G., Everett, B., & Roberts, S. J. (2006). Identification of isolates that cause a leaf spot disease of brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology, 96, 735–745.  https://doi.org/10.1094/PHYTO-96-0735.CrossRefPubMedGoogle Scholar
  38. Williams, P. H. (1980). Black rot: a continuing threat to world crucifers. Plant Disease, 64, 736–742.CrossRefGoogle Scholar
  39. Zaccardelli, M., Campanile, F., Spasiano, A., & Merighi, M. (2007). Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrcC. European Journal of Plant Pathology, 118, 299–306.  https://doi.org/10.1007/s10658-007-9115-y.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Aleš Eichmeier
    • 1
    Email author
  • Eliška Peňázová
    • 1
  • Robert Pokluda
    • 2
  • Joana G. Vicente
    • 3
  1. 1.Mendeleum - Institute of GeneticsMendel University in BrnoLedniceCzech Republic
  2. 2.Department of Vegetable Science and FloricultureMendel University in BrnoLedniceCzech Republic
  3. 3.School of Life SciencesUniversity of WarwickWarwickUK

Personalised recommendations