Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 3, pp 859–869 | Cite as

Characterization of Lysobacter capsici strain NF87–2 and its biocontrol activities against phytopathogens

  • Youzhou LiuEmail author
  • Junqing Qiao
  • Yongfeng Liu
  • Xuejie Liang
  • Yaqiu Zhou
  • Jinbing LiuEmail author
Original Article
  • 126 Downloads

Abstract

Strain NF87–2 is an aerobic, non-motile and rod-shaped Gram-negative bacterium. It was isolated from the rhizosphere of green pepper. In the present study, sequence analyses of the 16S rRNA and copA genes revealed that strain NF87–2 belongs to the species Lysobacter capsici. Strain NF87–2 could produce chitinase, cellulase, protease and siderophore. The strain showed a broad spectrum of antifungal activities against phytopathogens, including Alternaria brassicae, Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Colletotrichum gloeosporioides and Fusarium oxysporum. The secondary metabolites secreted by strain NF87–2 could inhibit the growth of both bacteria and fungi, but the mixture of peptides and proteins extracts from a suspension of strain NF87–2 could only inhibit the mycelia growth of fungi. Our results also have shown that strain NF87–2 could control pepper damping off caused by R. solani effectively in a greenhouse setting. Our findings provide a new source for a biocontrol agent and shed light on the mechanism of the antagonistic activity of L. capsici.

Keywords

Lysobacter capsici Biocontrol Copper Secondary metabolites Peptides 

Notes

Funding

This study was funded by the National Key R&D Program of China (grants 2017YFD0200400) and the Science and Technology Project of Jiangsu Province (BE2018359). This research was also partially funded by Suzhou Science and Technology Projects (No. SNG2018095).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

References

  1. Ausubel, F. M. (1988). Current protocols in molecular biology. New York: Greene Pub, Associates.Google Scholar
  2. Christensen, P., & Cook, F. D. (1978). Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. International Journal of Systematic and Evolutionary Microbiology, 28, 367–393.Google Scholar
  3. Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. St. Paul: APS Press.Google Scholar
  4. de Bruijn, I., Cheng, X., de Jager, V., Gómez, E. R., Watrous, J., Patel, N., Postma, J., Dorrestein, P. C., Kobayashi, D., & Raaijmakers, J. M. (2015). Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics, 16, 991–1006.CrossRefGoogle Scholar
  5. Fang, Z. D. (1998). Methods in plant pathology. Beijing: Chinese Agriculture Press.Google Scholar
  6. Fernando, W., Nakkeeran, S., & Zhang, Y. (2005). Biosynthesis of Antibiotics by PGPR and its Relation in Biocontrol of Plant Diseases, pp 67–109. PGPR: Biocontrol and Biofertilization, Springer Netherlands.Google Scholar
  7. Folman, L. B., Klein, M. J. E. M. D., Postma, J., & Veen, J. A. V. (2004). Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biological Control, 31, 145–154.CrossRefGoogle Scholar
  8. Gómez, E. R., Postma, J., Raaijmakers, J. M., & de Bruijn, I. (2015). Diversity and activity of Lysobacter species from disease suppressive soils. Frontiers in Microbiology, 6, 1243.Google Scholar
  9. Gu, G., Smith, L., Wang, N., Wang, H., & Lu, S. E. (2009). Biosynthesis of an antifungal oligopeptide in Burkholderia contaminans strain MS14. Biochemical and Biophysical Research Communications, 380, 328–332.CrossRefGoogle Scholar
  10. Hayward, A. C., Fegan, N., Fegan, M., & Stirling, G. R. (2010). Stenotrophomonas and Lysobacter: Ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. Journal of Applied Microbiology, 108, 756–770.CrossRefGoogle Scholar
  11. Islam, M. T., Hashidoko, Y., Deora, A., Ito, T., & Tahara, S. (2005). Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied and Environmental Mmicrobiology, 71, 3786–3796.CrossRefGoogle Scholar
  12. Ji, G. H., Wei, L. F., He, Y. Q., Wu, Y. P., & Bai, X. H. (2008). Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control, 45, 288–296.CrossRefGoogle Scholar
  13. Kilic-Ekici, O., & Yuen, G. Y. (2004). Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biological Control, 30, 446–455.CrossRefGoogle Scholar
  14. Ko, H. S., Jin, R. D., Krishnan, H. B., Lee, S. B., & Kim, K. Y. (2009). Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Current Microbiology, 59, 608–615.CrossRefGoogle Scholar
  15. Lane, D. J. (1991). In E. Stackebrandt & M. Goodfellow (Eds.), 16S/23S rRNA sequencing in nucleic acid techniques in Bacterial Systematics (pp. 115–175). New York: John Wiley & Sons.Google Scholar
  16. Lee, Y.S., Naning, K.W., Nguyen, X.H., Kim, S. B, Moon, J.H., & Kim, K.Y. (2014). Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematode, Meloidogyne incognita. Journal of Microbiology and Biotechnology, 24, 1510–1515.Google Scholar
  17. Lee, Y. S., Nguyen, X. H., Naning, K. W., Park, Y. S., & Kim, K. Y. (2015). Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants. Indian Journal of Microbiology, 55, 74–80.CrossRefGoogle Scholar
  18. Lejon, D. P., Nowak, V., Bouko, S., Pascault, N., Mougel, C., Martins, J. M., & Ranjard, L. (2007). Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination. FEMS Microbiology Ecology, 61, 424–437.CrossRefGoogle Scholar
  19. Liu, Y.Z. (2016). Application of Lysobacter capsici NF87-2, in: Patent, C. (Ed.).Google Scholar
  20. Liu, B., Huang, L., Buchenauer, H., & Kang, Z. (2010). Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pesticide Biochemistry and Physiology, 98, 305–311.CrossRefGoogle Scholar
  21. Liu, Y. Z., Chen, Z. Y., Liang, X. J., & Zhu, J. H. (2012). Screening, evaluation and identification of antagonistic bacteria against Fusarium oxysporum f. sp. lycopersici and Ralstonia solanacearum. Chinese Journal of Biological Control, 28, 101–108.Google Scholar
  22. Lou, L., Qian, G., Xie, Y., Hang, J., Chen, H., Zaleta-Rivera, K., Li, Y., Shen, Y., Dussault, P. H., Liu, F., & Du, L. (2011). Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. Journal of the American Chemical Society, 133, 643–645.CrossRefGoogle Scholar
  23. Nett, M., & Konig, G. M. (2007). The chemistry of gliding bacteria. Natural Product Reports, 24, 1245–1261.CrossRefGoogle Scholar
  24. Palumbo, J. D., Sullivan, R. F., & Kobayashi, D. Y. (2003). Molecular characterization and expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. Journal of Bacteriology, 185, 4362–4370.CrossRefGoogle Scholar
  25. Postma, J., Nijhuis, E. H., & Yassin, A. F. (2010). Genotypic and phenotypic variation among Lysobacter capsici strains isolated from Rhizoctonia suppressive soils. Systematic and Applied Microbiology, 33, 232–235.CrossRefGoogle Scholar
  26. Puopolo, G., Cimmino, A., Palmieri, M. C, Giovannini, O., Evidente, A., & Pertot, I. (2014a). Lysobacter capsici AZ78 produces cyclo(L-pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangiaof Phytophthora infestans and Plasmopara viticola. Journal of Applied Microbiology, 117, 1168–1180.Google Scholar
  27. Puopolo, G., Giovannini, O., & Pertot, I. (2014b). Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine. Microbiological Research, 169, 633–642.CrossRefGoogle Scholar
  28. Puopolo, G., Tomada, S., Sonego, P., Moretto, M., Engelen, K., Perazzolli, M., & Pertot, I. (2016). The Lysobacter capsici AZ78 genome has a gene pool enabling it to interact successfully with phytopathogenic microorganisms and environmental factors. Frontiers in Microbiology, 7, 96.CrossRefGoogle Scholar
  29. Qian, G. L., Hu, B. S., Jiang, Y. H., & Liu, F. Q. (2009). Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens. Agricultural Sciences in China, 8, 68–75.CrossRefGoogle Scholar
  30. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor laboratory Press.Google Scholar
  31. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  32. Wang, Y., Qian, G., Li, Y., Wang, Y., Wang, Y., Wright, S., Li, Y., Shen, Y., Liu, F., & Du, L. (2013). Biosynthetic mechanism for sunscreens of the biocontrol agent Lysobacter enzymogenes. PLoS One, 8, e66633.CrossRefGoogle Scholar
  33. Xie, Y., Wright, S., Shen, Y., & Du, L. (2012). Bioactive natural products from Lysobacter. Natural Product Reports, 29, 1277–1287.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Institute of Vegetable CropsJiangsu Academy of Agricultural SciencesNanjingChina

Personalised recommendations