Advertisement

Identification and pathogenicity of Diaporthe species associated with stem-end rot of mango (Mangifera indica L.)

  • Li Lim
  • Masratul Hawa Mohd
  • Latiffah ZakariaEmail author
Short Communication
  • 48 Downloads

Abstract

Diaporthe spp. isolated from stem-end rot lesions of several cultivars of mango were phylogenetically identified as Diaporthe arecae, Diaporthe eugeniae, Diaporthe pascoei, Diaporthe perseae, and Diaporthe ueckerae based on Internal Transcribed Spacer, Translation Elongation Factor-1α, and β-tubulin sequences. Pathogenicity test showed that species identified as D. pascoei and D. ueckerae isolates produced stem-end rot symptoms on tested mango cvs Chok Anan, Waterlily, and Falan. Diaporthe arecae was pathogenic both on Chok Anan and Waterlily, while D. perseae produced rotting symptoms only on Chok Anan. Diaporthe eugeniae was not pathogenic in all tested mango cultivars. Our study indicates that pathogenic Diaporthe spp. are possibly opportunistic pathogens.

Keywords

Diaporthe Stem-end rot Mango ITS TEF-1α β-Tubulin 

Notes

Acknowledgments

This work was supported by the Universiti Sains Malaysia. The authors thank the lab staff and postgraduate students of Plant Pathology Lab,  School of Biological Sciences, USM involved in the field work. We thank Dr. Nik Mohd Izham for his assistance in analysing the pathogenicity test data.

Funding

This work was funded by the Universiti Sains Malaysia Bridging grant (304/PBIOLOGI/6316028).

Compliance with ethical standards

Human and animal rights statement

This article does not contain any studies with human or animal participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Botella, L., & Diez, J. J. (2011). Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Diversity, 47, 9–18.CrossRefGoogle Scholar
  2. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.CrossRefGoogle Scholar
  3. Darvas, J. M., & Kotzé, J. M. (1987). Avocado fruit diseases and their control in South Africa. South Africa Avocado Growers’ Association Yearbook, 10, 117–119.Google Scholar
  4. Dissanayake, A. J., Phillips, A. J. L., Hyde, K. D., Yan, J. Y., & Li, X. H. (2017). The current status of species in Diaporthe. Mycosphere, 8, 1106–1156.CrossRefGoogle Scholar
  5. Gao, Y., Liu, F., & Cai, L. (2016). Unravelling Diaporthe species associated with Camellia. Systematics and Biodiversity, 14, 102–117.CrossRefGoogle Scholar
  6. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Google Scholar
  7. Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41.CrossRefGoogle Scholar
  8. Guarnaccia, V., & Crous, P. W. (2017). Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus, 8, 317–334.CrossRefGoogle Scholar
  9. Guarnaccia, V., Groenewald, J. Z., Woodhall, J., Armengol, J., Cinelli, T., Eichmeier, A., Ezra, D., Fontaine, F., Gramaje, D., Gutierrez-Aguirregabiria, A., Kaliterna, J., Kiss, L., Larignon, P., Luque, J., Mugnai, L., Naor, V., Raposo, R., Sándor, E., Váczy, K. Z., & Crous, P. W. (2018). Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia, 40, 135–153.CrossRefGoogle Scholar
  10. Huang, F., Udayanga, D., Wang, X., Hou, X., Mei, X., Fu, Y., Hyde, K. D., & Li, H. (2015). Endophytic Diaporthe associated with Citrus: A phylogenetic reassessment with seven new species from China. Fungal Biology, 119, 331–347.CrossRefGoogle Scholar
  11. Johnson, G. I., Cooke, A. W., Mead, A. J., & Wells, L. A. (1991). Stem end rot of mango in Australia: causes and control. Acta Horticulturae, 291, 288–295.CrossRefGoogle Scholar
  12. Johnson, G. I., Mead, A. J., Cooke, A. W., & Dean, J. R. (1992). Mango stem-end rot pathogens - fruit infection by endophytic colonisation of the inflorescence and pedicel. Annals of Applied Biology, 120, 225–234.CrossRefGoogle Scholar
  13. Ko, Y., Liu, C. W., Chen, C. Y., Maruthasalam, S., & Lin, C. H. (2009). First report of stem end rot of mango caused by Phomopsis mangiferae in Taiwan. Plant Disease, 93, 764.CrossRefGoogle Scholar
  14. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefGoogle Scholar
  15. Marques, M. W., Lima, N. B., De Morais, M. A., Barbosa, M. A. G., Souza, B. O., Michereff, S. J., & Câmara, M. P. S. (2013). Species of Lasiodiplodia associated with mango in Brazil. Fungal Diversity, 61, 181–193.CrossRefGoogle Scholar
  16. Mukherjee, S.K., & Litz, R.E. (1997). The mango: Botany, production and uses. CABI International.Google Scholar
  17. Peterson, R. A. (1978). Susceptibility of Fuerte avocado fruit at various stages of growth, to infection by anthracnose and stem end rot fungi. Australian Journal of Experimental Agriculture and Animal Husbandry, 18, 158–160.CrossRefGoogle Scholar
  18. Rhoden, S. A., Garcia, A., Rubin Filho, C. J., Azevedo, J. L., & Pamphile, J. A. (2012). Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genetics and Molecular Research, 11(3), 2513–2522.CrossRefGoogle Scholar
  19. Sebastianes, F. L., Lacava, P. T., Fávaro, L. C., Rodrigues, M. B., Araújo, W. L., Azevedo, J. L., & Pizzirani-Kleiner, A. A. (2012). Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Current Genetics, 58(1), 21–33.CrossRefGoogle Scholar
  20. Sessa, L., Abreo, E., & Lupo, S. (2018). Diversity of fungal latent pathogens and true endophytes associated with fruit trees in Uruguay. Journal of Phytopathology, 166(9), 633–647.CrossRefGoogle Scholar
  21. Tan, Y. P., Edwards, J., Grice, K. R. E., & Shivas, R. G. (2013). Molecular phylogenetic analysis reveals six new species of Diaporthe from Australia. Fungal Diversity, 61, 251–260.CrossRefGoogle Scholar
  22. Udayanga, D., Liu, X., Crous, P. W., McKenzie, E. H. C., Chukeatirote, E., & Hyde, K. D. (2012). A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity, 56, 157–171.CrossRefGoogle Scholar
  23. Udayanga, D., Castlebury, L. A., Rossman, A. Y., Chukeatirote, E., & Hyde, K. D. (2014). Insights into the genus Diaporthe, phylogenetic species delimitation in the D. eres species complex. Fungal Diversity, 67, 203–229.CrossRefGoogle Scholar
  24. White, T., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols, a guide to methods and applications (pp. 315–322). New York: Academic Press.Google Scholar
  25. Yang, Q., Fan, X.-L., Du, Z., & Tian, C.-M. (2017). Diaporthe species occurring on Senna bicapsularis in southern China, with descriptions of two new species. Phytotaxa, 302(2), 145–155.CrossRefGoogle Scholar
  26. Zakaria, N. A., & Rahim, A. R. A. (2014). An overview of fruit supply chain in Malaysia. Jurnal Mekanikal, 37(1), 36–46.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations